tìm các nghiệm nguyên của pt :
a, x4 + 2x7y - x14 - y2 = 7 (x;y thuộc Z+ )
b, 2x2 + 2xy - x +y = 112 (x;y thuộc Z+ )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo định lý Viet:
$x_1+x_2=3$
$x_1x_2=-7$
Khi đó:
$A=\frac{1}{x_1-1}+\frac{1}{x_2-1}=\frac{x_2-1+x_1-1}{(x_1-1)(x_2-1)}$
$=\frac{(x_1+x_2)-2}{x_1x_2-(x_1+x_2)+1}=\frac{3-2}{-7-3+1}=\frac{-1}{9}$
$E=x_1^4+x_2^4=(x_1^2+x_2)^2-2(x_1x_2)^2=[(x_1+x_2)^2-2x_1x_2]^2-2(x_1x_2)^2$
$=[3^2-2(-7)]^2-2(-7)^2=431$
Ta có x4 + x2 + 1 = y2
Lại có x4 + 2x2 + 1 ≥ x4 + x2 + 1 hay (x2 + 1)2 ≥ x4 + x2 + 1
=> (x2 + 1)2 ≥ y2 (1)
Lại có x4 + x2 + 1 > x4 => y2 > x4 (2)
Từ (1) và (2), ta có x4 < y2 ≤ (x2 + 1)2
<=> y2 = (x2 + 1)2 = x4 + 2x2 + 1
Mà x4 + x2 + 1 = y2 => x4 + 2x2 + 1 = x4 + x2 + 1
<=> x2 = 0 <=> x = 0
Thay vào, ta có 1 = y2 <=> y ∈ {-1,1}
Vậy ...
1.
Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)
Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):
\(-x^2+x+1=-x^2+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)
Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\):
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)
Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)
Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ
PT <=> \(\left(y+2\right)x^2=y^2-1\)
- Nếu y = -2 <=> \(\left(-2\right)^2-1=0\) (vô lí)
=> \(y\ne-2\)
PT <=> \(x^2=\dfrac{y^2-1}{y+2}\)
Có \(x\in Z\Rightarrow x^2\in Z\)
=> \(\dfrac{y^2-1}{y+2}\in Z\)
=> \(y^2-1⋮y+2\)
=> \(y\left(y+2\right)-2\left(y+2\right)+3⋮y+2\)
=> \(3⋮y+2\)
Ta có bảng
y+2 | 1 | 3 | -1 | -3 |
y | -1 | 1 | -3 | -5 |
x | 0 (Tm) | 0 (Tm) | \(\varnothing\) | \(\varnothing\) |
KL: Vậy phương trình có tập nghiệm\(\left(x;y\right)=\left\{\left(0;1\right);\left(0;-1\right)\right\}\)
Ở câu b, bậc của y là bậc nhất nên có thể rút y theo x
\(y=\frac{112-2x^2+x}{2x+1}=\frac{-x\left(2x+1\right)+2x+1+111}{2x+1}=-x+1+\frac{111}{2x+1}\)
\(\Rightarrow2x+1\in\text{Ư}\left(111\right)=\left\{111;37;3;1;-111;-37;-3;-1\right\}\)
\(\Rightarrow x\in\left\{...\right\}\)