(1/2-1).(1/3-1).(1/4-1)....(1/1963-1)
Ai giúp mình với ạ! Mình xin cảm ơn nhiều ạ!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(C=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.....\dfrac{48}{49}.\dfrac{49}{50}=\dfrac{1}{50}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
`a)25/(x+1)-1 1/6=-1/3-0,5`
`=>25/(x+1)=-1/3-1/2+1+1/6`
`=>25/(x+1)=1/3`
`=>75=x+1`
`=>x=74`
Vậy `x=74`
`b)(2x+25 3/5)^2-9/25=0`
`=>(2x+128/5)=9/25`
`**2x+128/5=3/5`
`=>2x=-125/5=-25`
`=>x=-25/2`
`**2x+128/5=-3/5`
`=>2x=-131/5`
`=>x=-131/10`
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x - 1/2 = 3/5
x = 3/5 + 1/2
x = 11/10
b) x - 1/2 = -2/3
x = -2/3 + 1/2
x = -1/6
c) 2/5 - x = 0,25
x = 2/5 - 0,25
x = 2/5 - 1/4
x = 3/20
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x-3}{x+1}=\dfrac{x^2}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)
Suy ra: \(x^2-4x+3-x^2=0\)
\(\Leftrightarrow-4x=-3\)
hay \(x=\dfrac{3}{4}\)(thỏa ĐK)
Vậy: \(S=\left\{\dfrac{3}{4}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{100}\)
\(\Rightarrow A=\dfrac{99}{100}\)
Đoạn suy ra đầu tiên cơ sở gì bạn suy ra được như vậy nhỉ?
![](https://rs.olm.vn/images/avt/0.png?1311)
=1/2+1/3+1/4+...+1/100
xét mẫu:có ssh là (100-2):1+1=99 số
tổng là (100+2)*99:2=5940
vậy ta có 1/5940
![](https://rs.olm.vn/images/avt/0.png?1311)
B = 1+1³+1⁴+...+1⁹⁸+1⁹⁹
B1 = 1³+1⁵+...+1⁹⁹+1¹⁰⁰
B1-B =(1³+1⁵+...+1⁹⁹+1¹⁰⁰) - ( 1+1³+1⁴+...+1⁹⁸+1⁹⁹ )
B0 = 1¹⁰⁰ - 1⁹⁹
B = 1
\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{1963}-1\right)\)
\(=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{1963}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1962}{1963}\)
\(=\frac{1}{1963}\)
Đây là bài tính nhanh ạ!!