cho: x^2+y^2+z^2+1/x^2+1/y^2+1/z^2=6 . tinh A=x^2018+y^2018+z^2018
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Những câu hỏi liên quan
![](https://rs.olm.vn/images/avt/0.png?1311)
20 tháng 11 2022
Bài 1:
Đặt 2018=a
\(B=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\)
\(=1+a-\dfrac{a}{a+1}+\dfrac{a}{a+1}=1+a=2019\)
Ta có: x^2 + y^2 +z^2 +1/x^2 +1/y^2 +1/z^2 =6
(x^2 -2 + 1/x^2) +(y^2 -2 +1/y^2) +(z^2 -2 +1/z^2) = 0
(x -1/x)^2 +(y-1/y)^2 +(z-1/z)^2 = 0
Suy ra: x- 1/x = 0 ,y- 1/y = 0 và z- 1/z = 0
x^2 -1/ x= 0,y^2 -1/ y=0 và z^2-1 /z =0
x^2 -1=0,y^2-1=0 và z^2-1=0
x^2 = 1.y^2 =1 và z^2 =1
Do đó: x^2018 = y^2018 =z^2018 =1
Vậy A =x^2018 +y^2018 +z^2018 =3