A) (x+1)(x2+x+1)(×−1)(×2−x+1)=7
B )(×−1)(×2+x+1)−x(x+2)(×−2)=5
Tìm x biết
( giúp mình với T_T )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ĐKXĐ: \(x\notin\left\{1;-2\right\}\)
Ta có: \(\dfrac{2x}{x-1}-\dfrac{1}{x+2}=2\)
\(\Leftrightarrow\dfrac{2x\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\dfrac{x-1}{\left(x-1\right)\left(x+2\right)}=\dfrac{2\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
Suy ra: \(2x^2+4x-x+1=2\left(x^2+x-2\right)\)
\(\Leftrightarrow2x^2+3x+1=2x^2+2x-4\)
\(\Leftrightarrow2x^2+3x+1-2x^2-2x+4=0\)
\(\Leftrightarrow x+5=0\)
hay x=-5(thỏa ĐK)
Vậy: S={-5}
2) ĐKXĐ: \(x\notin\left\{5;-5\right\}\)
Ta có: \(\dfrac{x}{x^2-25}-\dfrac{1-x}{x-5}=\dfrac{1}{x+5}\)
\(\Leftrightarrow\dfrac{x}{\left(x-5\right)\left(x+5\right)}+\dfrac{\left(x-1\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}\)
Suy ra: \(x+x^2+5x-x-5=x-5\)
\(\Leftrightarrow x^2+5x-5-x+5=0\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
Vậy: S={0;-4}
a/ ĐKXĐ : \(x\ne1;-2\)
\(\dfrac{2x}{x-1}-\dfrac{1}{x+2}=2\)
\(\Leftrightarrow\dfrac{2x\left(x+2\right)-\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}=2\)
\(\Leftrightarrow2x^2+3x-x+1=2x^2+4x-2x-4\)
\(\Leftrightarrow2x+1=2x-4\)
\(\Leftrightarrow1=-4\left(loại\right)\)
Vậy...
b/ĐKXĐ : \(x\ne\pm5\)
\(\dfrac{x}{x^2-25}-\dfrac{1-x}{x-5}=\dfrac{1}{x+5}\)
\(\Leftrightarrow\dfrac{x}{\left(x-5\right)\left(x+5\right)}+\dfrac{\left(x-1\right)\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}=\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}\)
\(\Leftrightarrow x+x^2+5x-x-5=x-5\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy...
a. \(8x\left(x-2007\right)-2x+4034=0\)
\(\Rightarrow\left(x-2017\right)\left(4x-1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-2017=0\\4x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2017\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy x=2017 hoặc x=1/4
b.\(\dfrac{x}{2}+\dfrac{x^2}{8}=0\)
\(\Rightarrow\dfrac{x}{2}\left(1+\dfrac{x}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=0\\1+\dfrac{x}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{x}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy x=0 hoặc x=-4
c.\(4-x=2\left(x-4\right)^2\)
\(\Rightarrow\left(4-x\right)-2\left(x-4\right)^2=0\)
\(\Rightarrow\left(4-x\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy x=4 hoặc x=7/2
d.\(\left(x^2+1\right)\left(x-2\right)+2x=4\)
\(\Rightarrow\left(x-2\right)\left(x^2+3\right)=0\)
Nxet: (x2+3)>0 với mọi x
=> x-2=0 <=>x=2
Vậy x=2
a, 8\(x\).(\(x-2007\)) - 2\(x\) + 4034 = 0
4\(x\)(\(x\) - 2007) - \(x\) + 2017 = 0
4\(x^2\) - 8028\(x\) - \(x\) + 2017 = 0
4\(x^2\) - 8029\(x\) + 2017 = 0
4(\(x^2\) - 2. \(\dfrac{8029}{8}\) \(x\) +( \(\dfrac{8029}{8}\))2) - (\(\dfrac{8029}{4}\))2 + 2017 = 0
4.(\(x\) + \(\dfrac{8029}{8}\))2 = (\(\dfrac{8029}{4}\))2 - 2017
\(\left[{}\begin{matrix}x=-\dfrac{8029}{8}+\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\\x=-\dfrac{8029}{8}-\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\end{matrix}\right.\)
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
\(a,3x-2\left(x-3\right)=0\\ \Leftrightarrow3x-2x+6=0\\ \Leftrightarrow x=-6\\ b,\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\\ \Leftrightarrow2x^2+2x-3x-3=2x^2-x+10x-5\\ \Leftrightarrow2x^2-x-3=2x^2+9x-5\\ \Leftrightarrow10x-2=0\\ \Leftrightarrow x=\dfrac{1}{5}\\ c,ĐKXĐ:x\ne\pm1\\ \dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\\ \Leftrightarrow\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow\dfrac{2x^2+2x-x^2+x-x^2+1}{\left(x+1\right)\left(x-1\right)}=0\)
\(\Rightarrow3x+1=0\\ \Leftrightarrow x=-\dfrac{1}{3}\left(tm\right)\)
\(d,\left(2x+3\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\\ e,ĐKXĐ:x\ne\pm2\\ \dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\\ \Leftrightarrow\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-22}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\dfrac{x^2-4x+4-3x-6-2x+22}{\left(x-2\right)\left(x+2\right)}=0\\ \Rightarrow x^2-9x+20=0\\ \Leftrightarrow\left(x^2-5x\right)-\left(4x-20\right)=0\\ \Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
a) \(\left(x+1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x^2-x+1\right)=7\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x^2-x+1\right)\right]\left[\left(x-1\right)\left(x^2+x+1\right)\right]=7\)
\(\Leftrightarrow\left(x^3+1\right)\left(x^3-1\right)=7\)
\(\Leftrightarrow x^6-1=7\)
\(\Leftrightarrow x^6=8\Leftrightarrow x=1,414213562\) (số hơi lẻ)
b) \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x\left(x^2-1\right)=5\)
\(\Leftrightarrow x^3-1-x^3+x=5\)
\(\Leftrightarrow-1+x=5\Leftrightarrow x=6\)
Vậy x = 6