Tìm tất cả các số tự nhiên a, b thỏa mãn: a(b + 1) + 2b = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a,b là các số tự nhiên
=>a+1>=1 và b+5>=5
(a+1)(b+5)=20
mà a+1>=1 và b+5>=5
nên (a+1;b+5) thuộc {(4;5); (2;10); (1;20)}
=>(a,b) thuộc {(3;0); (1;5); (0;15)}
b: a,b là các số tự nhiên
=>2a+3>=3 và b+1>=1
(2a+3)(b+1)=5
mà 2a+3>=3 và b+1>=1
nên (2a+3;b+1)=(5;1)
=>(a,b)=(1;0)
c:
2a+3=b(a+1)
=>2a+2-b(a+1)=-1
=>(a+1)(2-b)=-1
=>(a+1)(b-2)=1
a;b là các số tự nhiên nên a+1>=1 và b-2>=-2
(a+1)(b-2)=1
mà a+1>=1 và b-2>=-2
nên (a+1;b-2)=(1;-1)
=>(a,b)=(3;1)
a: (a,b) thuộc {(3;0); (1;5); (0;15)}
b: (a,b)=(1;0)
c: (a,b)=(3;1)
Vì số tự nhiên cần tìm có đúng 4 ước là
1; a; b; n và n + 1 = 4.( a + b)
Nên n là ước lớn nhất vì vậy n là chính số cần tìm
Vì số ước số của n là 4 và a; b là 2 ước của n nên n = a.b ( a; b \(\in\) P)
Theo bài ra ta có: a.b + 1 = 4.(a + b) ⇒ a.b + 1 = 4.a + 4.b
⇒ a.b - 4a = 4b - 1 ⇒ a.(b - 4) = 4b - 1 ⇒ a = \(\dfrac{4b-1}{b-4}\) ⇒ a = 4 + \(\dfrac{15}{b-4}\)
Vì a \(\in\) P nên b - 4 \(\in\) Ư(15)
Lập bảng ta có:
b - 4 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
b | -11 (loại) |
-1(loại) |
1 | 3 | 5 | 7 | 9 loại | 19 |
a = 4 + \(\dfrac{15}{b-4}\) | -1 loại | -11 loại | 19 | 9 loại | 5 |
Theo bảng trên ta có a = 5; b = 19 \(\Rightarrow\) n = 5.19 = 95
Vậy các số tự nhiên thỏa mãn đề bài là 95.
Ghi chú thử lại ta có: 95 = 5.19
Ư(95) = 1; 5; 19; 95 (đúng 4 ước ok)
95 + 1 = 96 = 4.( 5 + 19) (ok)
Cho hệ phương trình:
\(\left{\right. a^{3} = 3 \left(\right. a + 2 b \left.\right) \\ b^{3} = 3 \left(\right. b + 2 c \left.\right) \\ c^{3} = 3 \left(\right. c + 2 a \left.\right)\)
Tìm tất cả các số thực \(\left(\right. a , b , c \left.\right)\) thỏa mãn hệ trên.
Hệ phương trình có dạng đối xứng cyclic (tuần hoàn) giữa \(a , b , c\).
Thay vào:
\(t^{3} = 3 \left(\right. t + 2 t \left.\right) = 9 t\)\(t^{3} = 9 t \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } t^{3} - 9 t = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } t \left(\right. t^{2} - 9 \left.\right) = 0\)
Nên:
\(t = 0 \text{ho}ặ\text{c} t = \pm 3\)
\(\left(\right. a , b , c \left.\right) = \left(\right. 0 , 0 , 0 \left.\right) , \left(\right. 3 , 3 , 3 \left.\right) , \left(\right. - 3 , - 3 , - 3 \left.\right)\)
Giả sử không phải tất cả bằng nhau.
Đặt:
\(X = a + 2 b , Y = b + 2 c , Z = c + 2 a\)
Theo hệ:
\(a^{3} = 3 X , b^{3} = 3 Y , c^{3} = 3 Z\)
Nhớ rằng:
\(X = a + 2 b , Y = b + 2 c , Z = c + 2 a\)
Ta có hệ tuyến tính:
\(\left{\right. X = a + 2 b \\ Y = b + 2 c \\ Z = c + 2 a\)
Viết dưới dạng ma trận:
\(\left(\right. 1 & 2 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \left.\right) \left(\right. a \\ b \\ c \left.\right) = \left(\right. X \\ Y \\ Z \left.\right)\)
\(a^{3} = 3 X , b^{3} = 3 Y , c^{3} = 3 Z\)
Điều này khá phức tạp, ta chuyển sang bước khác.
\(a^{3} + b^{3} + c^{3} = 3 \left(\right. a + b + c + 2 b + 2 c + 2 a \left.\right) = 3 \left(\right. 3 \left(\right. a + b + c \left.\right) \left.\right) = 9 \left(\right. a + b + c \left.\right)\)
Như vậy:
\(a^{3} + b^{3} + c^{3} = 9 \left(\right. a + b + c \left.\right)\)
Công thức trên trở thành:
\(a^{3} + b^{3} + c^{3} = 9 S\)
Sử dụng công thức tổng lập phương:
\(a^{3} + b^{3} + c^{3} - 3 a b c = \left(\right. a + b + c \left.\right) \left(\right. a^{2} + b^{2} + c^{2} - a b - b c - c a \left.\right)\)
Nếu \(a^{3} + b^{3} + c^{3} = 9 S\), thì:
\(a^{3} + b^{3} + c^{3} - 3 a b c = 9 S - 3 a b c\)
Nhưng nếu \(a , b , c\) bằng nhau, ta có nghiệm đã tìm. Nếu không, có thể \(S = 0\).
Nếu \(a + b + c = 0\), thì:
\(a^{3} + b^{3} + c^{3} = 3 a b c\)
Theo bước 7, \(a^{3} + b^{3} + c^{3} = 9 S = 0\), nên:
\(3 a b c = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } a b c = 0\)
Nếu tổng bằng 0, tích bằng 0 ⇒ ít nhất một trong ba số là 0.
Giả sử \(c = 0\), hệ trở thành:
\(\left{\right. a^{3} = 3 \left(\right. a + 2 b \left.\right) \\ b^{3} = 3 b \\ 0 = 3 \left(\right. 0 + 2 a \left.\right) \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 0 = 6 a \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } a = 0\)
Từ đó:
\(a = 0\)
Phương trình thứ hai:
\(b^{3} = 3 b \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } b^{3} - 3 b = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } b \left(\right. b^{2} - 3 \left.\right) = 0\)
Nên:
\(b = 0 , b = \sqrt{3} , b = - \sqrt{3}\)
Vậy nghiệm:
\(\left(\right. 0 , 0 , 0 \left.\right) , \left(\right. 0 , \sqrt{3} , 0 \left.\right) , \left(\right. 0 , - \sqrt{3} , 0 \left.\right)\)
\(\left(\right. 0 , 0 , 0 \left.\right) , \left(\right. 0 , \sqrt{3} , 0 \left.\right) , \left(\right. 0 , - \sqrt{3} , 0 \left.\right) , \ldots\)