K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3

\(a;x:\left(9\dfrac{1}{2}-\dfrac{3}{2}\right)=\dfrac{\dfrac{2}{5}+\dfrac{4}{9}-\dfrac{5}{11}}{\dfrac{8}{5}+\dfrac{16}{9}-\dfrac{20}{11}}\\ x:8=\dfrac{1}{4}\Rightarrow x=\dfrac{1}{4}\cdot8=2\)

\(b;\left|2x-\dfrac{1}{3}\right|-\left(-2^2\right)=4\left(\dfrac{1}{-2}\right)^3\\ \left|2x-\dfrac{1}{3}\right|+4=-\dfrac{1}{2}\\ \left|2x-\dfrac{1}{3}\right|=-\dfrac{1}{2}-4=-\dfrac{9}{2}\\ \Rightarrow\left[{}\begin{matrix}2x-\dfrac{1}{3}=-\dfrac{9}{2}\Rightarrow x=-\dfrac{25}{12}\\2x-\dfrac{1}{3}=\dfrac{9}{2}\Rightarrow x=\dfrac{29}{12}\end{matrix}\right.\)

15 tháng 8 2023

a, y \(\times\) \(\dfrac{4}{3}\) = \(\dfrac{16}{9}\)

    y         =    \(\dfrac{16}{9}\) : \(\dfrac{4}{3}\)

    y         = \(\dfrac{4}{3}\)

b, ( y - \(\dfrac{1}{2}\)) + 0,5 = \(\dfrac{3}{4}\)

    y - 0,5 + 0,5 = \(\dfrac{3}{4}\)

   y                   = \(\dfrac{3}{4}\)

c, \(\dfrac{4}{5}-\dfrac{2}{5}y\) = 0,2

   0,8 - 0,4y = 0,2

           0,4y = 0,8 - 0,2

           0,4y  = 0,6

               y = 1,5

   

15 tháng 8 2023

d, (y + \(\dfrac{3}{4}\)\(\times\) \(\dfrac{5}{7}\) = \(\dfrac{10}{9}\)

    y + \(\dfrac{3}{4}\)           = \(\dfrac{10}{9}\) : \(\dfrac{5}{7}\)

   y + \(\dfrac{3}{4}\)            = \(\dfrac{14}{9}\)

y                    = \(\dfrac{14}{9}\) - \(\dfrac{3}{4}\)

 y                   =   \(\dfrac{29}{36}\)

e, y : \(\dfrac{5}{4}\)         = \(\dfrac{9}{5}\)  + \(\dfrac{1}{2}\)

   y : \(\dfrac{5}{4}\)         =   \(\dfrac{23}{10}\)

  y                =      \(\dfrac{23}{10}\)

  y               =   \(\dfrac{23}{8}\)

f, y \(\times\) \(\dfrac{1}{2}\) + \(\dfrac{3}{2}\) \(\times\) y   = \(\dfrac{4}{5}\)

   y \(\times\) ( \(\dfrac{1}{2}+\dfrac{3}{2}\))      =  \(\dfrac{4}{5}\)

   2y                       = \(\dfrac{4}{5}\)

    y                        = \(\dfrac{2}{5}\)

16 tháng 7 2019

=48 nha

1 tháng 4 2020

a) Đk: x \(\ne\)-2

Ta có: \(\frac{2}{x+2}-\frac{2x^2+16}{x^2+8}=\frac{5}{x^2-2x+4}\)

<=> \(\frac{2\left(x^2-2x+4\right)-\left(2x^2+16\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{5\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)

<=> 2x2 - 4x + 8 - 2x2 - 16 = 5x + 10

<=> -4x - 8 = 5x + 10

<=> -4x - 5x = 10 + 8

<=> -9x = 18

<=> x = -2 (ktm)

=> pt vô nghiệm

b) Đk: x \(\ne\)2; x \(\ne\)-3

Ta có: \(\frac{1}{x-2}-\frac{6}{x+3}=\frac{5}{6-x^2-x}\)

<=> \(\frac{x+3}{\left(x-2\right)\left(x+3\right)}-\frac{6\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{5}{\left(x-2\right)\left(x+3\right)}\)

<=> x + 3 - 6x + 12 = -5

<=> -5x = -5 - 15

<=> -5x = -20

<=> x = 4 

vậy S = {4}

c) Đk: x \(\ne\)8; x \(\ne\)9; x \(\ne\)10; x \(\ne\)11

Ta có: \(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)

<=> \(\left(\frac{8}{x-8}+1\right)+\left(\frac{11}{x-11}+1\right)=\left(\frac{9}{x-9}+1\right)+\left(\frac{10}{x-10}+1\right)\)

<=> \(\frac{x}{x-8}+\frac{x}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\)

<=> \(x\left(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\right)=0\)

<=> x = 0 (vì \(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\ne0\)

Vậy S = {0}

29 tháng 3 2020

7) Ta có : \(\frac{5x-2}{3}=\frac{5-3x}{3}\)

=> \(5x-2=5-3x\)

=> \(5x+3x=5+2\)

=> \(8x=7\)

=> \(x=\frac{8}{7}\)

8) Ta có : \(\left(6x+3\right)\left(5x-20\right)=0\)

=> \(\left[{}\begin{matrix}6x+3=0\\5x-20=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=4\end{matrix}\right.\)

10) ĐKXĐ : \(x\ne5\)

Ta có : \(\frac{2x-5}{x+5}=3\)

=> \(2x-5=3\left(x+5\right)\)

=> \(2x-5-3x-15=0\)

=> \(x=-20\) ( TM )

11) ĐKXĐ : \(x-2\ne0\)

=> \(x\ne2\)

Ta có : \(\frac{1}{x-2}+4=\frac{x-3}{2-x}\)

=> \(\frac{1}{x-2}+\frac{4\left(x-2\right)}{x-2}=\frac{3-x}{x-2}\)

=> \(1+4\left(x-2\right)=3-x\)

=> \(1+4x-8-3+x=0\)

=> \(5x=10\)

=> x = 2 ( KTM )

Vậy phương trình trên vô nghiệm.

29 tháng 3 2020

7) \(\frac{5x-2}{3}=\frac{5-3x}{3}\)

\(\Leftrightarrow\) 5x-2=5-3x

\(\Leftrightarrow\) 5x+3x=5+2

\(\Leftrightarrow\) 8x=7

\(\Leftrightarrow\) x=\(\frac{7}{8}\)

8) (6x+3)(5x-20)=0

\(\Rightarrow\) 6x+3=0 hoặc 5x-20=0

\(\Rightarrow\) 6x=-3

\(\Rightarrow\) x=\(\frac{-1}{2}\)

26 tháng 1 2021

a, làm tương tự với phần b bài nãy bạn đăng 

b, \(\left(x+1\right)^2-5=x^2+11\)

\(\Leftrightarrow x^2+2x+1-5=x^2+11\)

\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)

Vậy tập nghiệm của phương trình là S = { 5 } ( kết luận như thế với các phần sau nhé ! ) 

c, \(3\left(3x-1\right)=3x+5\Leftrightarrow9x-3-3x-5=0\)

\(\Leftrightarrow6x-8=0\Leftrightarrow x=\frac{4}{3}\)

d, \(3x\left(2x-3\right)-3\left(3+2x^2\right)=0\)

\(\Leftrightarrow6x^2-9x-9-6x^2=0\Leftrightarrow-9x=9\Leftrightarrow x=-1\)

e, khai triển nó ra rút gọn rồi giải thôi nhé! ( tự làm )

f, \(\left(x-1\right)^2-x\left(x+1\right)+3\left(x-2\right)+5=0\)

\(\Leftrightarrow x^2-2x+1-x^2+x+3x-6+5=0\)

\(\Leftrightarrow2x=0\Leftrightarrow x=\frac{0}{2}\)vô lí 

Vậy phương trình vô nghiệm 

5 tháng 6 2019

#)Giải :

a) x + 2x + 3x + ... + 100x = - 213

=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213 

=> 100x + 5049 = - 213 

<=> 100x = - 5262

<=> x = - 52,62

5 tháng 6 2019

#)Giải :

b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)

\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)

\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)

\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)

\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)

\(\Leftrightarrow x=\frac{2}{3}\)

9 tháng 2 2020

\(ĐKXĐ:x\ne3;x\ne5;x\ne4;x\ne6\)

\(\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)

\(\Rightarrow\frac{x}{x-3}-\frac{x}{x-5}-\frac{x}{x-4}+\frac{x}{x-6}=0\)

\(\Rightarrow x\left(\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}=0\left(1\right)\end{cases}}\)

\(\left(1\right)\Rightarrow\frac{1}{x-3}+\frac{1}{x-6}=\frac{1}{x-5}+\frac{1}{x-4}\)

\(\Rightarrow\frac{2x-9}{\left(x-3\right)\left(x-6\right)}=\frac{2x-9}{\left(x-5\right)\left(x-4\right)}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{2}\left(tm\right)\\\left(x-3\right)\left(x-6\right)=\left(x-5\right)\left(x-4\right)\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow x^2-9x+18=x^2-9x+20\)

\(\Leftrightarrow0=2\left(L\right)\)

Vậy pt có 2 nghiệm \(\left\{0;\frac{9}{2}\right\}\)

6: \(-x^2y\left(xy^2-\dfrac{1}{2}xy+\dfrac{3}{4}x^2y^2\right)\)

\(=-x^3y^3+\dfrac{1}{2}x^3y^2-\dfrac{3}{4}x^4y^3\)

7: \(\dfrac{2}{3}x^2y\cdot\left(3xy-x^2+y\right)\)

\(=2x^3y^2-\dfrac{2}{3}x^4y+\dfrac{2}{3}x^2y^2\)

8: \(-\dfrac{1}{2}xy\left(4x^3-5xy+2x\right)\)

\(=-2x^4y+\dfrac{5}{2}x^2y^2-x^2y\)

9: \(2x^2\left(x^2+3x+\dfrac{1}{2}\right)=2x^4+6x^3+x^2\)

10: \(-\dfrac{3}{2}x^4y^2\left(6x^4-\dfrac{10}{9}x^2y^3-y^5\right)\)

\(=-9x^8y^2+\dfrac{5}{3}x^6y^5+\dfrac{3}{2}x^4y^7\)

11: \(\dfrac{2}{3}x^3\left(x+x^2-\dfrac{3}{4}x^5\right)=\dfrac{2}{3}x^3+\dfrac{2}{3}x^5-\dfrac{1}{2}x^8\)

12: \(2xy^2\left(xy+3x^2y-\dfrac{2}{3}xy^3\right)=2x^2y^3+6x^3y^3-\dfrac{4}{3}x^2y^5\)

13: \(3x\left(2x^3-\dfrac{1}{3}x^2-4x\right)=6x^4-x^3-12x^2\)