cho hình chữ nhật ABCD.Từ D hạ đường vuông góc với AC,cắt AC ở H.Biết rằng AB=13cm,DH=5cm.Tính BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có tam giác DHC đồng dạng với tam giác ADC
==> DC.AD = AC.DH
==> sqr(DC.AD) = SQR(AC.DH)
mà AD^2 = AC^2 - DC^2
==> 169( AC^2 - 169) = 25.AC^2
=> AC= 169/12
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tam giác DHC vuông tại H
\(\Rightarrow HC=\sqrt{DC^2-DH^2}=12\left(cm\right)\)
Xét tam giác ADC vuông tại D đường cao DH
\(\Rightarrow AH=\dfrac{DH^2}{HC}=\dfrac{25}{12}\)
\(\Rightarrow AC=AH+HC=\dfrac{169}{12}\)(cm)
\(\Rightarrow BD=\dfrac{169}{12}\)(cm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do ABCD là hình chữ nhật => CD = AB = 13 cm và BD = AC
Áp dụng định lí Pi-ta-go vào tam giác vuông DHC có:
HC^2 = CD^2 - DH^2 = 13^2 - 5^2 = 12^2 => HC = 12 cm
Áp dụng hệ thức lượng vào tam giác vuông ACD có:
CD^2 = HC.AC => AC = CD^2/HC = 13^2/12 = 169/12 cm
Vậy BD = AC = 169/12 cm.
![](https://rs.olm.vn/images/avt/0.png?1311)
the hệ thức lượng trong tam giác vuông :
ah^2=dh.hb=9.16=144--->ah=12cm
suy ra được ad=15cm và ab=20cm
chu vi hcn là (15+20).2=70
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔBAD=ΔBHD(cạnh huyền-góc nhọn)
Suy ra: BA=BH(Hai cạnh tương ứng)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=BC^2-AB^2=13^2-12^2=169-144=25\)
=>\(AC=\sqrt{25}=5\left(cm\right)\)
b: XétΔBAC có BD là phân giác
nên \(\dfrac{AD}{BA}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{12}=\dfrac{CD}{13}\)
D nằm giữa A và C
=>AD+DC=AC
=>AD+DC=5(cm)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{12}=\dfrac{CD}{13}=\dfrac{AD+CD}{12+13}=\dfrac{5}{25}=0,2\)
=>\(AD=2\cdot12=2,4\left(cm\right);CD=2\cdot13=2,6\left(cm\right)\)
c: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
=>DA=DH
mà DA=2,4(cm)
nên DH=2,4(cm)
A B C D H 13 5 13
Theo đinh lý Pytago trong tam giác HCD có:
\(HC^2+HD^2=CD^2\)
\(\Rightarrow HC=\sqrt{13^2-5^2}=12\)
Lại có: \(CD^2=HC.AC\)
\(\Rightarrow13^2=12.AC\)
\(\Rightarrow AC=\frac{169}{12}\approx14,1\)
\(\Rightarrow BD\approx14,1\)(cm)
Giải như ngu