Cho M = 4^0+4^1+4^2+...+4^49+4^50. tim so du khi M chia cho 5
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Những câu hỏi liên quan

QL
18 tháng 11 2018
Gọi số cần tìm là a, ta thấy: (a+2) chia hết cho 3,4,5 và 6 và do a nhỏ nhất nên a thuộc BC(3,4,5,6)
Ta có: 3 = 3, 4 = 22, 5 = 5, 6 = 3.2
BCNN(3,4,5,6) = 3.22.5 = 60
BC(3,4,5,6) = B(60) = {0, 60,120,180,...}
--> a+2 = {0, 60, 120, 180,...}
--> a = {-2, 58, 118, 179, ..}
Ta thấy trong dãy có số 539 là số nhỏ nhất chia hết cho 11
Vậy số cần tìm là 539
Lời giải:
$M=4^0+(4+4^2)+(4^3+4^4)+....+(4^{49}+4^{50})$
$=1+4(1+4)+4^3(1+4)+....+4^{49}(1+4)$
$=1+(1+4)(4+4^3+...+4^{49})$
$=1+5(4+4^3+....+4^{49})$
$\Rightarrow M$ chia $5$ dư $1$.