K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

Ta có: \(a>b>0\)

   \(\Rightarrow a^2>b^2\)

\(\Rightarrow a^2+a>b^2+b\)

\(\Rightarrow a^2+a+1>b^2+b+1\)

\(\Rightarrow\frac{1}{a^2+a+1}< \frac{1}{b^2+b+1}\)

\(\Rightarrow x< y\)

1 tháng 11 2018

\(x=\frac{a+1}{a^2+a+1}=1-\frac{a^2}{a+a+1}\)

\(y=\frac{b+1}{1+b+b^2}=1-\frac{b^2}{1+b+b^2}\)

Do \(\frac{a^2}{a^2+a+1}>\frac{b^2}{b^2+b+1}\Rightarrow x< y\)

18 tháng 4 2016

Đặt \(m=1-x=1-\frac{a+1}{a^2+a+1}=\frac{a^2+a+1-a-1}{a^2+a+1}=\frac{a^2}{a^2+a+1}\)

\(n=1-y=1-\frac{b+1}{b^2+b+1}=\frac{b^2+b+1-b-1}{b^2+b+1}=\frac{b^2}{b^2+b+1}\)

=>\(m:n=\frac{a^2}{a^2+a+1}:\frac{b^2}{b^2+b+1}\)

=>\(m:n=\frac{a^2}{a^2+a+1}.\frac{b^2+b+1}{b^2}\)

=>\(m:n=\frac{a^2.\left(b^2+b+1\right)}{\left(a^2+a+1\right).b^2}\)

=>\(m:n=\frac{a^2.b^2+a^2.b+a^2}{a^2.b^2+a.b^2+b^2}\)

=>\(m:n=\frac{a^2.b^2+ab.a+a^2}{a^2.b^2+ab.b+b^2}\)

Vì \(a>b=>ab.a>ab.b;a^2>b^2\)

=>\(a^2.b^2+ab.a+a^2>a^2.b^2+ab.b+b^2\)

=>\(\frac{a^2.b^2+ab.a+a^2}{a^2.b^2+ab.b+b^2}>1\)

=>m:n>1

=>m:n

=>1-x>y-y

=>x<y

Vậy x<y

28 tháng 2 2020

1) Tìm GTNN : 

Ta có : \(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+\left(x+y\right)}\ge\frac{1}{\frac{\left(x+y\right)^2}{2}+1}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

2) Áp dụng BĐT Svacxo ta có :

\(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{\left(a+b+c\right)^2}{3+a+b+c}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

28 tháng 2 2020

2/ Áp dụng bđt Cô- si cho 2 số dương ta có :

\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge2\sqrt{\frac{a^2}{1+b}\frac{1+b}{4}}=a\)

Tương tự ta có \(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b;\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)

\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge a+b+c-\left(\frac{1+b}{4}+\frac{1+c}{4}+\frac{1+a}{4}\right)\)

\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge3-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=3-\frac{1}{4}.3-\frac{3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra <=> a=b=c=1 

20 tháng 2 2017

\(x-y=A=\frac{1+a}{1+a+a^2}-\frac{1+b}{1+b+b^2}=\frac{\left(1+a\right)\left(1+b+b^2\right)-\left(1+b\right)\left(1+a+a^2\right)}{\left(1+a+a^2\right)\left(1+b+b^2\right)}\)

\(A=\frac{\left(1+b+b^2+a+ab+ab^2\right)-\left(1+a+a^2+b+ab+a^2b\right)}{\left(1+a+a^2\right)\left(1+b+b^2\right)}=\frac{ab^2-a^2b}{\left(1+a+a^2\right)\left(1+b+b^2\right)}\)

\(A=\frac{ab\left(b-a\right)}{\left(1+a+a^2\right)\left(1+b+b^2\right)}< 0\) do a>b>0; mẫu>0

Vậy \(x-y< 0\Rightarrow x< y\)

26 tháng 5 2015

b) 

\(A=\frac{x+2xy+y-4xy}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}=\sqrt{x}-\sqrt{y}\)

\(B=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}=\sqrt{x}+\sqrt{y}\)

2 tháng 6 2017

Câu 2: \(\left(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\right)^2=\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2+2\left(x^2+y^2+z^2\right)\)

\(=\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2+6\)

Áp dụng bất đẳng thức AM - GM ta có :

\(\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2\ge3\sqrt[3]{\left(\frac{xy}{z}\right)^2\left(\frac{yz}{x}\right)^2\left(\frac{xy}{y}\right)^2}=3\sqrt[3]{\frac{\left(xyz\right)^4}{\left(xyz\right)^2}}=3\)\(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge\sqrt{3+6}=3\left(dpcm\right)\)

3 tháng 6 2017

tại sao lại suy ra đc \(3\sqrt[3]{\frac{\left(xyz\right)^4}{\left(xyz\right)^{^2}}}=3\) vậy cậu?

13 tháng 8 2017

3) Đặt b+c=x;c+a=y;a+b=z.

=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2

BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)

VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)

Dấu''='' tự giải ra nhá

13 tháng 8 2017

Bài 4 

dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)

rồi khai căn ra \(\Rightarrow\)dpcm. 

đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)

20 tháng 6 2021

Ta có A = 2018.2020 + 2019.2021

= (2020 - 2).2020 + 2019.(2019 + 2) 

= 20202 - 2.2020 + 20192 + 2.2019

= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B

=> A = B

b) Ta có B = 964 - 1= (932)2 - 12 

= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1) 

  (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80 

mà A =   (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10

=> A < B

20 tháng 6 2021

c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)

=> A < B

d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)

=> A < B