K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

=\(\frac{-14-5}{a+1}\)

=\(\frac{-19}{a+1}\)

Để \(\frac{-19}{a+1}\)là số nguyên nên -19 phải chia hết cho a+1

=> a+1 thuộc Ư(-19)={+-1;+-19}

còn lại bạn tự xét các trường hợp nha

5 tháng 5 2016

a) Để A nguyên => 5 chia hết cho n - 2

n - 2 thuộc U(5) = {-5 ; -1 ; 1 ; 5}

n - 2 = -5 => n = -3

n - 2 = -1 => n = 1

n - 2 = 1 => n = 3

n - 2 = 5 => n =  7

Vậy n thuộc {-3 ; 1 ; 3 ; 7}

b)  \(\frac{y}{3}-\frac{1}{x}=\frac{1}{3}\Leftrightarrow\frac{y}{3}-\frac{1}{3}=\frac{1}{x}\)

\(\frac{y-1}{3}=\frac{1}{x}\) <=> (y-1).x = 3

(y-1).x = 1.3 = (-1).(-3)

TH1: y - 1 = 1 => y = 2

=> x = 3

TH2: y - 1 = 3 => y = 4

=> x = 1

TH3: y - 1 = -1 => y = 0

=> x = -3

TH4: y - 1 = -3 => y = -2

=> x = -1

Vậy (x ; y) là (2 ; 3) ; (4 ; 1) ; (0 ; -3) ; (-2 ; -1)

5 tháng 5 2016

a) Để A là 1 số nguyên thì n-2 \(\in\)  Ư(5)={-1;-5;1;5}

Nếu n-2=-1 thì n=1

Nếu n-2=-5 thì n=-3

Nếu n-2=1 thì n=3

Nếu n-2=5 thì n=7

=>n \(\in\) {-3;1;3;7}

b) câu b này mik ko biết làm leuleu

8 tháng 7 2021

Giúp tui ik cần gấp

1) Các phân số trên có các mẫu số là 3, 7, 9

Vậy để a nhỏ nhất làm các tích trên là số nguyên thì a phải là BCNN(3,7,9) = 63

=> a=63

2) \(\frac{4}{5}< \frac{a}{b}< \frac{14}{15}\Rightarrow\frac{4b}{5}< a< \frac{14b}{15}\) 

\(\Rightarrow\frac{32b}{5}< 8a< \frac{112b}{15}\Rightarrow\frac{62b}{5}< 8a+6b< \frac{202b}{15}\Rightarrow\frac{62}{5}b< 2012< \frac{202}{15}b\)

\(\Rightarrow149< b\le162\)Vì \(a=\frac{2012-6b}{8}\Rightarrow130< a\le139\)

Xét \(8a+6b=2012\Leftrightarrow4a+3b=1006\)Vì 4a và 1006 là các số chẵn nên 3b phải chẵn => b chẵn

Vì 4a chia hết cho 4 còn 1006 chia 4 dư 2 nên 3b chia 4 dư 2 => b chia 4 dư 2

Lúc này b chỉ có thể là 150, 154, 158, 162 --> thế vào tìm a

Vậy các phân số cần tìm là: \(\frac{139}{150},\frac{136}{154},\frac{133}{158},\frac{130}{162}\)

30 tháng 6 2018

kể mẹ mày mày pải tự động não đi chứ

27 tháng 9 2018

-19/5 làm j có a mong bà viết cẩn thận hơn 

27 tháng 8 2020

a) Ta có: \(A=\frac{2x-5}{x+1}=\frac{\left(2x+2\right)-7}{x+1}=2-\frac{7}{x+1}\)

Để A nguyên => \(\frac{7}{x+1}\inℤ\) => \(\left(x+1\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

=> \(x\in\left\{-8;-2;0;6\right\}\)

b) Ta có: \(B=\frac{x+1}{3x+1}\) => \(3B=\frac{3x+3}{3x+1}=\frac{\left(3x+1\right)+2}{3x+1}=1+\frac{2}{3x+1}\)

Để B nguyên => \(\frac{2}{3x+1}\inℤ\Rightarrow\left(3x+1\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

=> \(3x\in\left\{-3;-2;0;1\right\}\) => \(x\in\left\{-1;-\frac{2}{3};0;\frac{1}{3}\right\}\)

Mà x nguyên => \(x\in\left\{-1;0\right\}\)

Thử lại ta thấy đều thỏa mãn

Vậy \(x\in\left\{-1;0\right\}\)

27 tháng 8 2020

Ta có : \(\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2\left(x+1\right)-7}{x+1}=2-\frac{7}{x+1}\)

Vì \(2\inℤ\Rightarrow\frac{-7}{x+1}\inℤ\Rightarrow-7⋮x+1\Rightarrow x+1\inƯ\left(-7\right)\Rightarrow x+1\in\left\{1;7;-1;-7\right\}\)

=> \(x\in\left\{0;6;-2;-8\right\}\)

Vậy  \(x\in\left\{0;6;-2;-8\right\}\) 

b) Để B nguyên

=> 3B nguyên

Khi đó 3B = \(\frac{3\left(x+1\right)}{3x+1}=\frac{3x+3}{3x+1}=\frac{3x+1+2}{3x+1}=1+\frac{2}{3x+1}\)

Vì \(1\inℤ\Rightarrow\frac{2}{3x+1}\inℤ\Rightarrow2⋮3x+1\Rightarrow3x+1\inƯ\left(2\right)\Rightarrow3x+1\in\left\{1;2;-2;-1\right\}\)

=> \(3x\in\left\{0;1;-3;-2\right\}\Rightarrow x\in\left\{0;\frac{1}{3};-1;\frac{-2}{3}\right\}\)

Vì x nguyên 

=> \(x\in\left\{0;-1\right\}\)

Vậy \(x\in\left\{0;-1\right\}\)

13 tháng 2 2015

a) Để A là phân số

=> n-4 thuộc Z và n-4 khác 0

=> n thuộc Z và n khác 4

b) Để A là số nguyên

=> n-4 chia hết cho 5 => n-4 thuộc Ư(5) = { 1;-1;5;-5}

Sau đó ta quay về cách tìm số n biết nó thuộc ước của 1 số


chú thích:

=> : suy ra

Ư : ước

13 tháng 2 2015

bn oi chia truong hop a bn
 

2 tháng 7 2015

Bài 1 :

x < 0 \(\Leftrightarrow\) 3a - 5 < -2 \(\Leftrightarrow\) 3a < 3 \(\Leftrightarrow\) a < 1

Bài 2 :

a) \(\frac{3a-5}{a}=3+\frac{5}{a}\in Z\)\(\Leftrightarrow a\inƯ\left(5\right)\)

\(\Leftrightarrow a\in\left\{-5;-1;1;5\right\}\)

b) \(\frac{2b-7}{b+2}=\frac{2b+4-11}{b+2}=2-\frac{11}{b+2}\in Z\) \(\Leftrightarrow b+2\inƯ\left(11\right)\)

\(\Leftrightarrow b+2\in\left\{-11;-1;1;11\right\}\)

\(\Leftrightarrow b\in\left\{-13;-3;-1;9\right\}\)