Tìm số tự nhiên có 2 chữ số ab khi biết 2b3 = \(\frac{3}{4}.\overline{3ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
http://olm.vn/hoi-dap/question/476913.html
coi link trên nha
Từ đề bài, ta có: (100a+10b+c)-(100c+10b+a)= 495 và a.c=b^2.
=> 99(a-c)=495. => a-c=5 và a.c=b^2.
-Nếu a=5: => c=0=> a.c=0=b^2.
=> b=0.
-Nếu a=6: => c=1=> b^2=1.6=6.(Loại do 6 không phải là số chính phương).
-Tương tự với a=7;c=2 và a=8;c=3.(Loại).
-Nếu a=9=> c=4 =>b^2= a.c=9.4=36 =6^2.
=> b=6( Do b thuộc N).
Vậy số có 3 chữ số cần tìm là 500 và 964.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Gọi số cần tìm là $a$. Theo đề thì:
$a-3\vdots 70,210,350$
$\Rightarrow a-3\vdots BCNN(70,210,350)$
$\Rightarrow a-3\vdots 1050$
$\Rightarrow a=1050k+3$ với $k$ là số tự nhiên
Vì $a$ có 4 chữ số nên $1050k+3>999$
$\Rightarrow k>0$
Để $a$ nhỏ nhất thì $k$ nhỏ nhất. $\Rightarrow k=1$
Khi đó: $a=1050.1+3=1053$
Gọi số tự nhiên cần tìm có dạng abcd ( \(0< a\le9\) , \(0\le b,c,d\le9\) )
Do số cần tìm khi chia cho 70 , 210 , 350 có cùng số dư là 3 nên
=> ( abcd - 3 ) \(⋮\) 70 , 210 , 350
=> ( abcd -3 ) \(⋮\) ƯCLN( 70 ; 210 ; 350)
70 = 2 . 5 . 7
210 = 2 . 3 . 5 . 7
350 = 2 . \(5^2\) . 7
=> ƯCLN ( 70;210;350) = 2 . 3 . \(5^2\) . 7 = 1050
=> abcd -3 chia hết 1050
mà abcd là số nhỏ nhất có 4 chữ số
=> abcd -3 = 1050
=> abcd = 1053
vậy số cần tìm là 1053
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi số đó là abcde.
ta có: 6abcde=9 x abcde
=> 600000+ abcde = 9 x abcde
=> 600000 = 9 x abcde - abcde
=> 600000 = abcde x (9-1)
=> 600000 = abcde x 8
=> abcde = 600000:8
=> abcde = 75000
vậy số đó là 75000
![](https://rs.olm.vn/images/avt/0.png?1311)
Chữ số hàng chục là chữ số lớn nhất chỉ chia hết cho \(1\)và chính nó nên chữ số hàng chục là chữ số \(7\).
Gọi số cần tìm là: \(\overline{a7b}\).
Ta có: \(\overline{b7a}-\overline{a7b}=693\)
\(\Leftrightarrow99\left(b-a\right)=693\)
\(\Leftrightarrow b-a=7\).
Suy ra \(a=1,b=8\)hoặc \(a=2,b=9\).
Vậy có hai số thỏa mãn yêu cầu bài toán là: \(178,279\).