c/m:5a+2b \(⋮\)13 \(\Leftrightarrow9a+b⋮13\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có 5a + 2b ⋮ 13
⇔ 5a + 2b + 13a ⋮ 13
⇔ 18a +2b ⋮ 13
⇔ 2 ( 9a + b) ⋮ 13
⇔ 9a + b ⋮ 13
Vậy 5a + 2b ⋮ 13 ⇔ 9a + b ⋮ 13 ( a,b ∈ Z )
Sr nhé t chx học dạng này cx k bt trình bày như thế này đc chx
Chỉ trình bày theo ý hiểu thôi
@@Học tốt @@
Chiyuki Fujito
Tái bút : À mà kí hiệu này là s Σ ạ


Bài 1: Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}=\frac{5\left(3a-2b\right)+3\left(2c-5a\right)}{5.5+3.3}=\frac{-10b+6c}{34}=\frac{-5b+3c}{17}\)
Do đó: \(\frac{5b-3c}{2}=\frac{-5b+3c}{17}\)
\(\Rightarrow\left\{\begin{matrix}b=\frac{3}{5}c\\a=\frac{2}{5}c\end{matrix}\right.\)
Mà \(a+b+c=-50\)
\(\Rightarrow\frac{2}{3}c+\frac{3}{5}c+c=-50\)
\(\Rightarrow\left(\frac{2}{5}+\frac{3}{5}\right)c+c=-50\)
\(\Rightarrow c+c=-50\)
\(\Leftrightarrow c=-25\)
\(\Rightarrow\left\{\begin{matrix}b=\frac{3}{5}c=\frac{3}{5}.\left(-25\right)=-15\\a=\frac{2}{5}c=\frac{2}{5}.\left(-25\right)=-10\end{matrix}\right.\)
Vậy: \(\left\{\begin{matrix}a=-10\\b=-15\\c=-25\end{matrix}\right.\)
Lấy trong sách nâng cao phát triển hay trong quyển chuyên đề có dạng tương tự ( câu a)
Mà câu b dễ mà

ta có : \(4a-3b⋮19\Leftrightarrow20a-15b⋮19\Leftrightarrow4\left(5a+b\right)-19b⋮19\)
\(\Rightarrow5a+b⋮19\left(đpcm\right)\)
bài còn lại lm tương tự nha
2. \(4a+3b⋮13\Leftrightarrow7\left(4a+3b\right)⋮13\Leftrightarrow28a+21b⋮13\Leftrightarrow28a+21b-13b⋮13\Leftrightarrow28a+8b⋮13\Leftrightarrow4\left(7a+2b\right)⋮13\Leftrightarrow7a+2b⋮13\)
Vậy \(4a+3b⋮13\Leftrightarrow7a+2b⋮13\)

1/
4a-3b chaia hết cho 19 => 6(4a-3b)=24a-18b chia hết cho 19
24a-18b-(5a+b)=19a-19b=19(a-b) chia hết cho 19 mà 24a-18b chia hết cho 19 nên 5a+b chia hết cho 19
2/
4a+3b chia hết cho 13 => 5(4a+3b)=20a+15b chia hết cho 13
20a+15b-(7a+2b)=13a+13b=13(a+b) chia hết cho 13 mà 20a+15b chia hết cho 13 nến 7a+2b cũng chia hết cho 13

BƯỚC 1: Viết lại số AB
Số AB gồm 2 chữ số → viết lại theo công thức:
AB=10×A+BAB = 10 × A + BAB=10×A+B
Ví dụ: Nếu A = 2, B = 3 thì AB = 23 = 10 × 2 + 3
🔷 BƯỚC 2: Phân tích biểu thức đề bài
Biểu thức là:
(6A−2B)(3A+12B)(6A - 2B)(3A + 12B)(6A−2B)(3A+12B)
→ Đây là tích của 2 biểu thức.
Một điều quan trọng:
Nếu tích của 2 số chia hết cho 13 → thì ít nhất một trong 2 số đó phải chia hết cho 13.
Vậy ta sẽ xét 2 trường hợp:
🔹 Trường hợp 1:
Giả sử 6A−2B6A - 2B6A−2B chia hết cho 13
Ta chia cả hai số cho 2 để đơn giản hơn:
6A−2B=2×(3A−B)⇒3A−B chia heˆˊt cho 136A - 2B = 2 × (3A - B) → 3A - B { chia hết cho 13}6A−2B=2×(3A−B)⇒3A−B chia heˆˊt cho 13
Tức là:
3A=B3A = B3A=B
Ví dụ:
Nếu A = 2 → B = 6
Nếu A = 3 → B = 9
Nếu A = 4 → B = 12 ❌ (sai, vì B phải là 1 chữ số)
Thử vài trường hợp:
AB = 3AAB = 10A + B
1 | 3 | 13 ✅ |
2 | 6 | 26 ✅ |
3 | 9 | 39 ✅ |
→ Các số AB đều chia hết cho 13! 🎉
🔹 Trường hợp 2:
Giả sử 3A+12B3A + 12B3A+12B chia hết cho 13
Ta thử đơn giản biểu thức này một chút.
Nhận xét: 12 gần bằng 13 → ta viết:
12B=−B+13B⇒3A+12B=3A−B+13B12B = -B + 13B 3A + 12B = 3A - B + 13B12B=−B+13B⇒3A+12B=3A−B+13B
Vì 13B chắc chắn chia hết cho 13, ta chỉ cần quan tâm:
3A−B chia hết cho 13⇒Giong hệt như trường hợp 1!⇒B=3A3A - B →{ chia hết cho 13}→ {Giống hệt như trường hợp 1!} → B = 3A3A−B chia hết cho 13⇒Giong hệt như trường hợp 1!⇒B=3A
→ Và kết quả cũng vậy: AB chia hết cho 13.
KẾT LUẬN:
Vì biểu thức đề cho chia hết cho 13 → dẫn đến B = 3A
→ Suy ra AB = 10A + B = 10A + 3A = 13A
→ AB chia hết cho 13!
MÌNH TÊN ĐỖ TẤN DŨNG 6D
Xét hiệu:
\(2\left(9a+b\right)-\left(5a+2b\right)\)
\(=18a+2b-5a-2b\)
\(=13a\)\(⋮\)\(13\)
mà \(5a+2b\)\(⋮\)\(13\)
\(\Rightarrow\)\(2\left(9a+b\right)\)\(⋮\)\(13\)
nà \(\left(2;13\right)=1\)
\(\Rightarrow\)\(9a+b\)\(⋮\)\(13\)