Chinh phục Đấu trường Tri thức OLM hoàn toàn mới, xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh:
A= 1-1/22.1-1/32...1-1/1002 với 1/2
A=(1/22 - 1)*(1/32 - 1)*(1/42 - 1)(1/52 - 1)*...*(1/1002 - 1)
So sánh với -1/2
nani "Doge"
fan bé sans à
wuttttt
so sánh hai số:
A=(2+1)(2^2+1)(2^4+1).((2^16+1) và B=2^32-1
A=1000^2+1003^2+1005^2+1006^2 và
B=1001^2+1002^2+1004^2+1007^2
A = ( 1/22 + 1 ) ( 1/32 - 1 ) ( 1 / 4 2 - 1 ) ( 1 / 52 - 1 ) ... ( 1 / 1002 - 1 )
mình đang cần gấp giúp mình với : <
1. Cho B= 1/1001 + 1/1002 + 1/1003 +.........+ 1/2000
C=1
So sánh B và C
Chứng tỏ rằng: B= 1/1001 + 1/1002 + 1/1003 +...........+ 1/2000 > 7/12
Cho A=\(\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2016}\)
Hãy so sánh A với \(\frac{11}{14}\)
Cho \(S=\frac{2}{2005+1}+\frac{2^2}{2005^2+1}+...+\frac{2^{n+1}}{2005^{^{2^n}}+1}+...+\frac{2^{2006}}{2006^{2^{2005}}+1}\). So sánh S với \(\frac{1}{1002}\)
\(\frac{10^{1002+1}}{10^{1001+0}}và\frac{10^{1003+1}}{10^{1002+0}}\)
so sánh 2 tổng trên
kết quả là dấu bé
dấu bé nhớ tích cho mình
Cho S= \(\frac{2}{2005+1}+\frac{2^2}{2005^2+1}+\frac{2^3}{2005^{2^2}+1}+........+\frac{2^{n+1}}{2005^{2^n}+1}+.......+\frac{2^{2006}}{2005^{2^{2006}}+1}\)
So sánh S với \(\frac{1}{1002}\)
So sánh (2+1)(2^2+1)(2^4+1)(2^8+1) với 2^32
A, SO SÁNH : 15/3*8+15/8*13+15/13*18+......................+15/88*93 và 1
B, SO SÁNH : 1/1001+1/1002+1/1003+........................+1/1999+1/2000 và 3/4