A=(1/2-1).(1/3-1)......(1/1963-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề:
\(\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{12}\right)\)
\(=\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\dfrac{4-3-1}{12}\)
\(=\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\dfrac{0}{12}\)
\(=0\)
Có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{1963^2}< \dfrac{1}{1962.1963}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{1963^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{1962.1963}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{1963^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1962}-\dfrac{1}{1963}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{1963^2}< 1\)
\(\Rightarrowđpcm.\)
\(1\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}....1\frac{1}{1963}\)\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.\frac{6}{5}......\frac{1964}{1963}\)\(=\frac{3.4.5.6.....1964}{2.3.4.5.....1963}=\frac{1964}{2}=982\)
\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{1963}-1\right)\)
\(=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{1963}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1962}{1963}\)
\(=\frac{1}{1963}\)
Ta có: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{1963^2}<\frac{1}{1962.1963}\)
Cộng vế theo vế ta được: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1963^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1962.1963}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1962.1963}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1962}-\frac{1}{1963}\)
\(=\)\(1-\frac{1}{1963}<1\)
Do đó :\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1963^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1962.1963}\)\(<1\)
a.(x-1)(x-5)=-18
<=>x2-5x-x+5=-18
<=>x2-5x-x+5+18=0
<=>x2-6x+23=0
Denta =(-6)2-4.1.23=-56 PTVN
b.5(x-2)(x+3)=15
<=>5(x2+3x-2x-6)=15
<=> 5x2 +15x-10x-30=15
<=> 5x2+15x-10x-30-15
<=> 5x2 +5x -45=0
Denta = 52-4.5.(-45)=525>0
Phương trình có 2 nghiệm phân biệt
x1= -5+√525/10=....
x2=-5-√525/10=....
xem trên mạng
hoi ong google