Cho biểu thức: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a, Tính giá trị của A khi \(x=\frac{16}{9};x=\frac{25}{9}\)
b, Tìm x để A = 5
c, Tìm \(x\in Z\)để \(A\in Z\)
cần gấp trong hôm nay!! Ai đúng mk tik nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x-9\ne0\Rightarrow x\ne9\)
\(\sqrt{x}\ge0\Rightarrow x\ge0\)
\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)
\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)
ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)
2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)
\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)
\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)
a) x=16/9 => A = 6
x=25/9 => A = 3
b) A = 5 (=) x = 35/25
k cho mik nha
A = căn x +1 trên căn x -1
A = căn x - 1 + 3 trên căn x - 1
A = 1 cộng vs 3 trên căn x - 1
thay x = 16/9
A = 1+ vs 3 trên căn 16/9 -1
A = 1 + vs 3 trên 4/3 - 1
A = 1+ vs 3 trên 1/3
A = 1+ vs 9
A= 10
tương tự vs x =25/9
A=5
=> 5 =1 + vs 3 trên căn x -1
4 = 3 trên căn x -1
căn x-1 = 3/4
căn x = 7/3
x = 49/9
đúng đấy
\(=\frac{3\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3\sqrt{x}-3-\sqrt{x}-1-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}-1}\)
x=\(24-16\sqrt{2}=4^2-2.4.\sqrt{8}+\left(2\sqrt{2}\right)^2=\left(4-2\sqrt{2}\right)^2\)
a) \(P=\frac{3}{\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}-5}{x-1}\)
\(P=\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-5}{x-1}\)
\(P=\frac{3\sqrt{x}-3-\sqrt{x}-1}{x-1}-\frac{\sqrt{x}-5}{x-1}\)
\(P=\frac{3\sqrt{x}-3-\sqrt{x}-1-\sqrt{x}+5}{x-1}\)
\(P=\frac{\sqrt{x}+1}{x-1}\)
vay \(P=\frac{\sqrt{x}+1}{x-1}\)
b) thay vao P ta duoc:
\(P=\frac{\sqrt{24-16\sqrt{2}}+1}{24-16\sqrt{2}-1}\)
\(P=\frac{\sqrt{\left(2\sqrt{2}\right)^2-2.2.4\sqrt{2}+4^2}+1}{\left(2\sqrt{2}\right)^2-2.2.4\sqrt{2}+4^2-1}\)
\(P=\frac{\sqrt{\left(2\sqrt{2}-4\right)^2}+1}{\left(2\sqrt{2}-4\right)^2-1^2}\)
\(P=\frac{2\sqrt{2}-4+1}{\left(2\sqrt{2}-4-1\right)\left(2\sqrt{2}-4+1\right)}\)
\(P=\frac{2\sqrt{2}-3}{\left(2\sqrt{2}-5\right)\left(2\sqrt{2}-3\right)}\)
\(P=\frac{1}{2\sqrt{2}-5}\)
vay \(P=\frac{1}{2\sqrt{2}-5}\)
a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)
Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)
b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)
Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)
Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành
\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)
\(\Rightarrow t=5t-10\)
\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)
\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)
\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)
Vậy \(x=\frac{9}{4}\)
\(a)\) Ta có : \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{\sqrt{x}-1}+\frac{2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
Thay \(x=\frac{16}{9}\) vào \(A=1+\frac{2}{\sqrt{x}-1}\) ta được :
\(A=1+\frac{2}{\sqrt{\frac{16}{9}}-1}=1+\frac{2}{\sqrt{\left(\frac{4}{3}\right)^2}-1}=1+\frac{2}{\frac{4}{3}-1}=1+\frac{2}{\frac{1}{3}}=1+6=7\)
Vậy giá trị của \(A=7\) khi \(x=\frac{16}{9}\)
Thay \(x=\frac{25}{9}\) vào \(A=1+\frac{2}{\sqrt{x}-1}\) ta được :
\(A=1+\frac{2}{\sqrt{\frac{25}{9}}-1}=1+\frac{2}{\sqrt{\left(\frac{5}{3}\right)^2}-1}=1+\frac{2}{\frac{5}{3}-1}=1+\frac{2}{\frac{2}{3}}=1+3=4\)
Vậy giá trị của \(A=4\) khi \(x=\frac{25}{9}\)
\(b)\) Để \(A=5\) thì \(1+\frac{2}{\sqrt{x}-1}=5\)
\(\Rightarrow\)\(\frac{2}{\sqrt{x}-1}=4\)
\(\Rightarrow\)\(\frac{1}{\sqrt{x}-1}=\frac{1}{2}\)
\(\Rightarrow\)\(\sqrt{x}-1=2\)
\(\Rightarrow\)\(\sqrt{x}=3\)
\(\Rightarrow\)\(x=3^2\)
\(\Rightarrow\)\(x=9\)
Vậy để \(A=5\) thì \(x=9\)
\(c)\) Để \(A\inℤ\) thì \(1+\frac{2}{\sqrt{x}-1}\inℤ\)
\(\Rightarrow\)\(2⋮\left(\sqrt{x}-1\right)\)
\(\Rightarrow\)\(\left(\sqrt{x}-1\right)\inƯ\left(2\right)\)
Mà \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)
Suy ra :
Vậy để \(A\inℤ\) thì \(x\in\left\{0;1;4;9\right\}\)
Chúc bạn học tốt ~