K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

 A= x^2 -3x + 3 = x^2 - 4x + 4 +x - 1 = (x -2 )^2 +x -1

Ta có: x>= 2

=> x-1 >= 1

Ta thây: (x-2 ) ^2 >= 0

=> (x-2)^2 + x - 1 >= 1

Dấu ''='' xảy ra khi: (x-2)^2 + x = 2 <=>  x^2 - 3x +2 =0 <=> x^2 -2x -x +2 = 0 <=> x( x-1) -2( x-1) =0 <=> (x-1)(x-2) = 0

<=>\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy GTNN của A là 1 khi x= 1 hoăc x=2 

10 tháng 12 2021

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

21 tháng 8 2023

ĐKXĐ : \(x\ne0;x\ne\pm1\)

a) Bạn ghi lại rõ đề.

b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)

c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)

Không tồn tại Min P \(\forall x\inℝ\)

22 tháng 7 2016

A= x^3-3x^2+3x5 

=x2(3x3+x-3)

Để giá trị của A nhỏ nhất 

=>x=2.Thay x=2 vào ta đc:

A=22(3*23+2-3)=4(3*8+2-3)

=4(24+2-3)=4*23=92

B=x^3 + 6x^2+12x-1   

=x3+6x2+12x+8-9

=(x+2)3-9

Để giá trị của B nhỏ nhất 

=>x=-1.Thay x=-1 vào ta được:

B=[(-1)+2]3-9=[1]3-9=-8

6 tháng 2 2017

bài này ta có thể giải theo 2 cách 

ta có A = \(\frac{x^2-2x+2011}{x^2}\)

\(\frac{x^2}{x^2}\)\(\frac{2x}{x^2}\)\(\frac{2011}{x^2}\)

= 1 - \(\frac{2}{x}\)\(\frac{2011}{x^2}\)

đặt \(\frac{1}{x}\)= y ta có 

A= 1- 2y + 2011y^2 

cách 1 : 

A = 2011y^2 - 2y + 1 

= 2011 ( y^2 - \(\frac{2}{2011}y\)\(\frac{1}{2011}\)

= 2011( y^2 - 2.y.\(\frac{1}{2011}\)\(\frac{1}{2011^2}\)\(\frac{1}{2011^2}\) + \(\frac{1}{2011}\)

= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)

= 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)

vì ( y - \(\frac{1}{2011}\)2>=0 

=> 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)

hay A >=\(\frac{2010}{2011}\)

cách 2  

A = 2011y^2 - 2y + 1 

= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\)\(\frac{1}{\sqrt{2011}}\)\(\frac{1}{2011}\)\(\frac{2010}{2011}\)

\(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)

vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0 

nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)

hay A >= \(\frac{2010}{2011}\)

a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)

=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)

=>18x-12>=12x+12

=>6x>=24

=>x>=4

b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)

=>\(x^2+2x+1< x^2-2x+1\)

=>4x<0

=>x<0

c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì

\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)

=>\(2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

=>x<=4

28 tháng 8 2017

Huhu, mik không biết giải mong bạn thông cảm!

28 tháng 8 2017

câu B bài cuối là D= 1 phần 2|x-1|+3 nha mọi ng