16x^2 - 8x + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nhân đa thức với đa thức
Theo bài ra, ta suy ra được:
32x^5 +1 -(32x^5 -1) =2
2 = 2
Vậy có vô số x thỏa mãn đề bài.
b: \(\Leftrightarrow32x^5+1-32x^5+1=2\)
=>0x=0(luôn đúng)
\(16x^2-9=\left(4x-3\right)\left(4x+3\right)\)
\(16x^2-8x+1=\left(4x-1\right)^2\)
\(A=\dfrac{16x^2-1}{16x^2-8x+1}\)
\(=\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\)
a) ĐKXĐ:
\(\left(4x-1\right)^2\ne0\Leftrightarrow4x-1\ne0\Leftrightarrow x\ne\dfrac{1}{4}\)
b) \(A=\dfrac{\left(4x+1\right)\left(4x-1\right)}{\left(4x-1\right)^2}=\dfrac{4x+1}{4x-1}\)
a,đkxđ : \(16x^2\ne0\Leftrightarrow x\ne0\)
b, \(\dfrac{16x^2}{1}-\dfrac{1}{16x^2}-\dfrac{8x}{1}+1=\dfrac{256x^4}{16x^2}-\dfrac{1}{16x^2}-\dfrac{128x^3}{16x^2}+\dfrac{16x^2}{16x^2}\)
\(=\dfrac{256x^4-1-128x^3+16x^2}{16x^2}=\dfrac{256x^4-128x^3+16x^2-1}{16x^2}\)
\(=\dfrac{\left(256x^4-128x^3+16^2\right)-1}{16x^2}=\dfrac{16x^2\left(16x^2-8x+1\right)-1}{16x^2}\)
\(=\dfrac{\left(4x\right)^2.\left(\left(4x\right)^2-8x+1\right)-1}{16x^2}=\dfrac{\left(4x\right)^2.\left(4x-1\right)^2-1}{16x^2}\)
\(=\dfrac{\left(16x^2-4x\right)^2-1}{16x^2}=\dfrac{\left(16x^2-4x-1\right)\left(16x^2-4x+1\right)}{16x^2}\)
\(=\dfrac{\left(\left(4x\right)^2-4x-1\right)\left(\left(4x\right)^2-4x+1\right)}{\left(4x\right)^2}\)
b: \(\Leftrightarrow32x^5+1-32x^5+1=2\)
=>2=2(luôn đúng)
a: \(\Leftrightarrow\left[\left(x-3\right)^2-\left(x+3\right)^2\right]\left[\left(x-3\right)^2+\left(x+3\right)^2\right]+24x^3=216\)
\(\Leftrightarrow-12x\left(2x^2+18\right)+24x^3=216\)
=>-216x=216
hay x=-1
\(a.\)
\(\dfrac{16x^2-1}{16x^2-8x+1}\\ =\dfrac{\left(4x\right)^2-1}{\left(4x-1\right)^2}\\ =\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\\ =\dfrac{4x+1}{4x-1}\)
\(b.\)
\(\dfrac{4x^2-4xy+y^2}{-\left(4x^2-y^2\right)}\\ =-\dfrac{\left(2x-y\right)^2}{\left(2x-y\right)\left(2x+y\right)}\\ =\dfrac{-\left(2x-y\right)}{2x+y}\\ =\dfrac{y-2x}{y+2x}\)
a) Ta có: \(\dfrac{16x^2-1}{16x^2-8x+1}\)
\(=\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\)
\(=\dfrac{4x+1}{4x-1}\)
b) Ta có: \(\dfrac{4x^2-4xy+y^2}{y^2-4x^2}\)
\(=\dfrac{\left(2x-y\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)
\(=\dfrac{\left(y-2x\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)
\(=\dfrac{y-2x}{y+2x}\)
`16x^2-8x+1`
`=(4x)^2-2.4x+1`
`=(4x-1)^2`
Bạn muốn tìm GTNN?
`=>(4x-1)^2>=0`
Dấu "=" `<=>4x-1=0<=>x=1/4`
\(16x^2-8x+1\)=0
\(16x^2-4x-4x+1=0\)
\(\left(16x^2-4x\right)-\left(4x-1\right)=0\)
\(4x\left(4x-1\right)-\left(4x-1\right)=0\)
\(4x-1=0\)
4x=1
x= \(\dfrac{1}{4}\)