Tìm a;b
b) 2^a + 342 = 7^b
c) 2^a + 80 = 3^b
d) 5^a + 9999 = 20b
e) 10^a + 168 = b^2
f) 5^a + 323 = b^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a-b=8-5=3
\(\frac{a}{b}=\frac{8}{5}\)
\(\frac{b}{a}=\frac{5}{8}\)
Very easy, mình giúp 1 câu, các câu còn lại bạn tự làm đi
a,\(\frac{27a-37}{4-5a}=2\Rightarrow27a-37=8-10a\Rightarrow37a=45\Rightarrow a=\frac{45}{37}\)
Lời giải:
\(A=2004+\sqrt{2003-x}\)
a)Để \(A\) có nghĩa thì \(2003-x\ge0\Leftrightarrow x\le2003\)
b) Ta có:
\(A=2004+\sqrt{2003-x}=2005\)
Tương đương với:
\(\sqrt{2003-x}=1\)
Suy ra :\(\left|2003-x\right|=1\Rightarrow\left[{}\begin{matrix}2003-x=1\\2003-x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2002\\x=2004\end{matrix}\right.\)
c) Ta có:
Để \(A\) nhỏ nhất thì \(\sqrt{2003-x}\) cũng phải nhỏ nhất
\(\sqrt{2003-x}\ge0\Leftrightarrow2004+\sqrt{2003-x}\ge2004\)
Dấu "=" xảy ra khi: \(x=2003\)
b) Ta có:
\(7^b=2^a+342\)
\(\Rightarrow\left\{{}\begin{matrix}7^b=343\\2^a=7^b-342\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}7^b=7^3\\2^a=343-342\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=3\\2^a=2^0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=3\\a=0\end{matrix}\right.\)
c) Ta có:
\(2^a+80=3^b\)
\(\Rightarrow\left\{{}\begin{matrix}3^b=81\\2^a=3^b-80\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3^b=3^4\\2^a=81-80\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=4\\2^a=2^0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=4\\a=0\end{matrix}\right.\)
d) Ta có:
\(5^a+9999=20b\)
\(\Rightarrow\left\{{}\begin{matrix}5^a=1\\20b=9999+5^a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5^a=5^0\\20b=9999+1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=0\\b=\dfrac{10000}{20}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=0\\b=500\end{matrix}\right.\)
e) \(10^a+168=b^2\)
\(\Rightarrow\left\{{}\begin{matrix}10^a=1\\b^2=168+10^a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}10^a=10^0\\b^2=168+1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=0\\b^2=169\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=0\\\left[{}\begin{matrix}b=13\\b=-13\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left(a;b\right)=\left(0;13\right);\left(0;-13\right)\)
f) \(5^a+323=b^2\)
\(\Rightarrow\left\{{}\begin{matrix}5^a=1\\b^2=5^a+323\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5^a=5^0\\b^2=324\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=0\\b^2=18^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=0\\\left[{}\begin{matrix}b=18\\b=-18\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left(a;b\right)=\left(0;18\right);\left(0;-18\right)\)
b) a = 0
b = 3
c) a = 0
b = 4
d) a = 0
b = 500
e) a = 0
b ∈ {13; -13}
f) a = 0
b ∈ {18; -18}