cho hai đoạn \(A=\left[a;a+2\right]\) và\(B=\left[b;b+1\right]\). Các số a, b thỏa mãn điều kiện gì để \(A\cap B\ne\varnothing\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Ta có:
\(\left. \begin{array}{l}AH \bot \left( P \right)\\BK \bot \left( P \right)\end{array} \right\} \Rightarrow AH\parallel BK\)
Mà \(AB\parallel HK\)
\( \Rightarrow ABKH\) là hình bình hành có \(AH \bot \left( P \right) \Rightarrow AH \bot HK \Rightarrow \widehat {AHK} = {90^ \circ }\)
Vậy \(ABKH\) là hình chữ nhật.
Vậy \(AH = BK\).
b) Ta có:
\(\left. \begin{array}{l}AH \bot \left( Q \right)\\BK \bot \left( Q \right)\end{array} \right\} \Rightarrow AH\parallel BK\)
Mà \(AB\parallel HK\)
\( \Rightarrow ABKH\) là hình bình hành có \(AH \bot \left( Q \right) \Rightarrow AH \bot HK \Rightarrow \widehat {AHK} = {90^ \circ }\)
Vậy \(ABKH\) là hình chữ nhật.
Vậy \(AH = BK\).

.
\(A\cap B\ne\varnothing\)khi \(\hept{\begin{cases}b\le a+2\\b+1\ge a\end{cases}\Leftrightarrow\hept{\begin{cases}b-a\le2\\b-a\ge-1\end{cases}}}\Leftrightarrow-1\le b-a\le2.\)
a a+2 b+1 b
Ta tìm điều kiện để \(A\cap B=\varnothing\).
Có hai trường hợp :
TH1: \(a+2< b.\)
TH2: \(b+1< a.\)
Để hai trường hợp đều không xảy ra thì \(\hept{\begin{cases}a+2\ge b\\a\le b+1\end{cases}\Rightarrow\hept{\begin{cases}a\ge b-2\\a\le b+1\end{cases}\Rightarrow}b-2\le a\le b+1.}\)

a) Ta có:
\(\left. \begin{array}{l}S \in \left( {SC{\rm{D}}} \right) \cap \left( {SAB} \right)\\C{\rm{D}}\parallel AB\\C{\rm{D}} \subset \left( {SC{\rm{D}}} \right)\\AB \subset \left( {SAB} \right)\end{array} \right\}\)
\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {SAB} \right)\) là đường thẳng \(d\) đi qua \(S\), song song với \(C{\rm{D}}\) và \(AB\).
b) Ta có:
\(\begin{array}{l}BC = \left( {BCM} \right) \cap \left( {ABC{\rm{D}}} \right)\\A{\rm{D}} = \left( {SA{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\MN = \left( {BCM} \right) \cap \left( {SA{\rm{D}}} \right)\\BC\parallel A{\rm{D}}\end{array}\)
Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(A{\rm{D}}\parallel BC\parallel MN\).
Vậy tứ giác \(CBMN\) là hình thang.

Bổ sug đề: Cho (O), BD,CE là các dây của (O)
Sửa đề: Chứng minh góc BOE=góc EDB+góc ECB
1/2(góc EDB+góc ECB)
=1/2(1/2sđ cung EB+1/2sđ cung EB)
=1/2sđ cung EB
=1/2*góc BOE
=>góc EDB+góc ECB=góc BOE

\(A'\) là trung điểm của \(SA\)
\(B'\) là trung điểm của \(SB\)
\( \Rightarrow A'B'\) là đường trung bình của \(\Delta SAB\)
\(\left. \begin{array}{l} \Rightarrow A'B'\parallel AB\\AB \subset \left( {ABC} \right)\end{array} \right\} \Rightarrow A'B'\parallel \left( {ABC} \right)\)
\(A'\) là trung điểm của \(SA\)
\(C'\) là trung điểm của \(SC\)
\( \Rightarrow A'C'\) là đường trung bình của \(\Delta SAC\)
\(\left. \begin{array}{l} \Rightarrow A'C'\parallel AC\\AC \subset \left( {ABC} \right)\end{array} \right\} \Rightarrow A'C'\parallel \left( {ABC} \right)\)
\(\left. \begin{array}{l}A'B'\parallel \left( {ABC} \right)\\A'C'\parallel \left( {ABC} \right)\\A'B',A'C' \subset \left( {A'B'C'} \right)\end{array} \right\} \Rightarrow \left( {A'B'C'} \right)\parallel \left( {ABC} \right)\)
Vậy phần hình chóp đã cho giới hạn bởi hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A'B'C'} \right)\) là hình chóp cụt đều.

a) Điểm B nằm giữa hai điểm A và C
Vì 3cm < 7cm nên AB < AC
b) Vì B nằm giữa hai điểm A và C
Nên AB + BC = AC
Hay 3 + BC = 7
=> BC = 7 – 3 = 4cm
c) Ta có: M là trung điểm của đoạn thẳng BC
=> MB=MC=BC:2=4:2=2cm
a, Trên tia Ax có AB < AC ( vì 3cm < 7cm )
nên điểm A nằm giữa 2 điểm B và C
b, Khi đó ta có : BC +AB = AC
\(\Rightarrow\) BC = AC - AB
hay BC = 7 - 3
\(\Rightarrow\) BC = 4 (cm)

a) Ta có vectơ \(\overrightarrow {OM} \) biểu diễn theo hai vectơ \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) là: \(\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right)\)
b) Do tọa độ hai điểm A và B là: \(A\left( {{x_A},{y_A}} \right),B\left( {{x_B},{y_B}} \right)\) nên ta có:\(\overrightarrow {OA} = \left( {{x_A},{y_A}} \right),\overrightarrow {OB} = \left( {{x_B},{y_B}} \right)\)
Vậy \(\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right) = \frac{1}{2}\left( {{x_A} + {x_B};{y_A} + {y_B}} \right) = \left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)
Tọa độ điểm M chính là tọa độ của vectơ nên tọa độ M là \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)
Ta có \(A\cap B=\varnothing khi\left[{}\begin{matrix}a+2< b\\b+1< a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a< b-2\\a>b+1\end{matrix}\right.\)
\(\Rightarrow A\cap B\ne\varnothing\) khi \(a\in\left[b-2;b+1\right]\)
A∩B ≠ ∅ \(\Leftrightarrow\left[{}\begin{matrix}a+2\ge b\\b+1\ge a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge b-2\\b\ge a-1\end{matrix}\right.\)