K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2020

a) Xét (O) có

CM là tiếp tuyến có M là tiếp điểm(gt)

CA là tiếp tuyến có A là tiếp điểm(gt)

Do đó: CM=CA(Tính chất hai tiếp tuyến cắt nhau)

Xét (O) có 

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: DM=DB(Tính chất hai tiếp tuyến cắt nhau)

Ta có: CM+MD=CD(M nằm giữa C và D)

mà CM=CA(cmt)

mà DM=DB(cmt)

nên AC+BD=CD(đpcm)

b) Gọi G là tâm của đường tròn đường kính CD

Xét (G) có CD là đường kính

nên G là trung điểm của CD

Ta có: AC⊥AB(AC là tiếp tuyến của (O))

BD⊥BA(BD là tiếp tuyến của (O))

Do đó: AC//BD(Định lí 1 từ vuông góc tới song song)

Xét tứ giác ACDB có AC//DB(cmt)

nên ACDB là hình thang có hai đáy là AC và DB(Định nghĩa hình thang)

Xét (O) có AB là đường kính

nên O là trung điểm của AB

Hình thang ACDB(AC//DB) có 

G là trung điểm của cạnh bên CD(cmt)

O là trung điểm của cạnh bên AB(cmt)

Do đó: GO là đường trung bình của hình thang ACDB(Định nghĩa đường trung bình của hình thang)

⇒GO//AC//BD và \(GO=\dfrac{AC+BD}{2}\)(Định lí 4 về đường trung bình của hình thang)

Ta có: GO//AC(cmt)

AC⊥AB(AC là tiếp tuyến của (O))

Do đó: GO⊥AB(Định lí 2 từ vuông góc tới song song)

hay GO⊥OA

Xét (O) có 

CA là tiếp tuyến có A là tiếp điểm(gt)

CM là tiếp tuyến có M là tiếp điểm(gt)

Do đó: OC là tia phân giác của \(\widehat{AOM}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{COM}=\dfrac{1}{2}\cdot\widehat{AOM}\)

Xét (O) có 

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: OD là tia phân giác của \(\widehat{MOB}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{DOM}=\dfrac{1}{2}\cdot\widehat{MOB}\)

Ta có: \(\widehat{COM}+\widehat{DOM}=\widehat{COD}\)(tia OM nằm giữa hai tia OC và OD)

hay \(\widehat{COD}=\dfrac{1}{2}\cdot\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

Xét ΔCOD có \(\widehat{COD}=90^0\)(cmt)

nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)

mà OG là đường trung tuyến ứng với cạnh huyền CD(G là trung điểm của CD)

nên \(OG=\dfrac{CD}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(CG=\dfrac{CD}{2}\)(G là trung điểm của CD)

nên OG=CG

⇔OG=R'

hay O∈(G)

Xét (G) có 

O∈(G)

AO⊥GO tại O(cmt)

Do đó: AO là tiếp tuyến của (G)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

⇔AB là tiếp tuyến của đường tròn có đường kính CD(đpcm)

a: Xét (O) có

CM,CA là các tiếp tuyến

nen CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA 

nên OC vuông góc với MA tại trung điểm của MA

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD vuông góc với MB tại trung điểm của MB

Từ (1)và (2) suy ra góc COD=1/2*180=90 độ

=>O nằm trên đường tròn đường kính DC

b: Xét tứ giác MIOK có

góc MIO=góc IOK=góc MKO=90 độ

nên MIOK là hình chữ nhật

=>MO=IK

c: Xét hình thang ABDC có

O,O' lần lượt là trung điểm của AB,CD

nên OO' là đường trung bình

=>OO' vuông góc với AB

=>AB là tiếp tuyến của (O')

10 tháng 5 2016

thiếu đề p ơi

11 tháng 12 2022

a: Xét (O) có

DM,DBlà các tiếp tuyến

nen DM=DB

=>góc DMB=góc DBM

b: Xét ΔDNC có MB//NC

nên DM/DC=DB/DN

mà DM=DB

nên DC=DN

c: ΔOMA cân tại O

mà OC là đường cao

nên OC là phân giác của góc AOM

Xét ΔCAO và ΔCMO co

OA=OM

góc AOC=góc MOC

OC chung

DO đo: ΔCAO=ΔCMO

=>góc CAO=90 độ

=>CA là tiếp tuyến của (O)

a: Gọi giao của DI với BC là G

góc BMC=góc BAC=1/2*180=90 độ

=>BM vuông góc DC; CA vuông góc DB

Xet ΔDBC có

BM,CA là đường cao

BM cắt CA tại I

=>I là trực tâm

=>DI vuông góc BC tại G

góc DAI+góc DMI=90+90=180 độ

=>DAIM nội tiếp

b: góc ADI=90 độ-góc DBC

góc ACB=90 độ-góc DBC

=>góc ADI=góc ACB

=>góc ADI=1/2*góc AOB

9 tháng 4 2018

hình đâu bạn

27 tháng 12 2016

KHÓ VẬY

27 tháng 12 2016

giup mk cai di cac cau

20 tháng 6 2017

TRAO THUONG 1 LIKE CHO CAU TRA LOI DUNG NHATleuleuleu