K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

a) Tứ giác AHIK nội tiếp

\(\widehat{AHI}+\widehat{AKI}=90^0+90^0=180^0\)

\(\Rightarrow\text{AHIK nội tiếp}\)

b) \(IA\times IC=IB\times ID\)

\(\text{Xét }\Delta IAB\text{ và }\Delta IDC\text{ có:}\)

\(\widehat{AIB}=\widehat{DIC}\left(\text{2 góc đối đỉnh}\right)\)

\(\widehat{A_1}=\widehat{D_1}\left(\text{cùng chắn }\stackrel\frown{BC}\right)\)

\(\Rightarrow\Delta IAB\sim\Delta IDC\left(g-g\right)\)

\(\Rightarrow\dfrac{IA}{ID}=\dfrac{IB}{IC}\)

\(\Rightarrow IA\times IC=IB\times ID\)

c) \(\Delta HKI\sim\Delta BDC\)

\(\widehat{H_2}=\widehat{A_2}\left(\text{AHIK nội tiếp}\right)\)

\(\widehat{A_2}=\widehat{B_2}\left(\text{cùng chắn }\stackrel\frown{CD}\right)\)

\(\Rightarrow\widehat{H_2}=\widehat{B_2}\) (1)

\(\widehat{K_1}=\widehat{A_1}\left(\text{AHIK nội tiếp}\right)\)

\(\widehat{A_1}=\widehat{D_1}\left(\text{cùng chắn }\stackrel\frown{BC}\right)\)

\(\Rightarrow\widehat{K_1}=\widehat{D_1}\) (2)

Từ (1) và (2) \(\Rightarrow\Delta HKI\sim\Delta BDC\left(g-g\right)\)

d) \(\dfrac{S_{HKI}}{S_{ABD}}\le\dfrac{HK^2}{4AI^2}\)

\(\Delta HKI\sim\Delta BDC\Rightarrow\dfrac{S_{HKI}}{S_{BDC}}=\dfrac{HK^2}{BD^2}\Rightarrow S_{HKI}=\dfrac{HK^2\times S_{BDC}}{BD^2}\)

\(\text{Đặt }T=\dfrac{S_{HKI}}{S_{ABD}}=\dfrac{HK^2\times S_{BDC}}{BD^2\times S_{ABC}}\)

Ta có: \(\dfrac{S_{BDC}}{S_{ABC}}=\dfrac{IC}{IA}\)

\(\Rightarrow T=\dfrac{HK^2\times IC}{BD^2\times IA}=\dfrac{HK^2\times IC}{\left(IB+ID\right)^2\times IA}\)

➤ Áp dụng bất đẳng thức AM - GM

\(\Rightarrow T\le\dfrac{HK^2\times IC}{4\times IB\times ID\times IA}=\dfrac{HK^2\times IC}{4\times IA\times IC\times IA}=\dfrac{HK^2}{4IA^2}\left(đpcm\right)\)

15 tháng 3 2016
  1. Gọi ABCD là tứ giác nội tiếp đường tròn.
  2. Trên cung nhỏ BC, ta có các góc nội tiếp ∠BAC = ∠BDC, và trên cung AB, ∠ADB = ∠ACB.
  3. Lấy 1 điểm K trên AC sao cho ∠ABK = ∠CBD;
    1. Từ ∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD, suy ra ∠CBK = ∠ABD.
  4. Do vậy tam giác △ABK đồng dạng với tam giác △DBC, và tương tự có △ABD ∼ △KBC.
  5. Suy ra: AK/AB = CD/BD, và CK/BC = DA/BD;
    1. Từ đó AK·BD = AB·CD, và CK·BD = BC·DA;
    2. Cộng các vế của 2 đẳng thức trên: AK·BD + CK·BD = AB·CD + BC·DA;
    3. Hay: (AK+CK)·BD = AB·CD + BC·DA;
    4. Mà AK+CK = AC, nên AC·BD = AB·CD + BC·DA; (điều phải chứng minh)
15 tháng 3 2016

Đây là đẳng thức ptôlêmê. 
C/m: Lấy 1 điểm M thuộc AC sao cho gocABD=gocMBC. Do tứ giác ABCD nội tiếp nên ^ADC=^ACB. Từ 2 điều trên suy ra tam giác ABD ~ MBC(g.g). Suy ra AD/MC=BD/BC => AD.BC=BD.MC (1) 
Từ cặp tam giác đồng dạng trên ta cũng có AB/BM = BD/BC => AB/BD = BM/BC mà ^ABM = ^DBC nên tam giác ABM ~ tam giác DBC. 
=> AB.CD=AM.BD (2) 
Cộng (1), (2) vế theo vế suy ra dpcm.

10 tháng 5 2021

+Cm tứ giác BEDC nội tiếp:
-Xét tứ giác BEDC, ta có:
góc BEC= góc BDC
góc BEC và góc BDC cùng nhìn cạnh BC( cùng nhìn cạnh dưới một góc không đổi )
---> BEDC là tứ giác nội tiếp
+Cm góc EBC= góc ECD:
-Do tứ giác BEDC là tứ giác nội tiếp
mà góc EBD và góc ECD cùng nhìn cạnh ED
---> góc EBD= góc ECD(đpcm)
Chúc bạn học tốt nhé ok

10 tháng 5 2021

xét tam giác ABC nhọn nội tiếp (O;r) ta có BD là đường cao(giả thiết)

=> góc BDC =90 độ

lại có CE là đường cao của tam giác ABC(giả thiết)=>góc CEB=90 độ

=>góc BDC+góc CEB=90+90=180 độ

mà 2 góc này ở vị trí đối nhau=> tứ giác BEDC nội tiếp

=> góc EBD=Góc ECD (cùng chắn cung ED)