K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2023

không có biết luôn á

 

30 tháng 6 2023

a) Xét ΔABH vuông tại H & ΔACH vuông tại H có:

- AB = AC (vì ΔABC cân tại A)

- AH là cạnh chung

Suy ra ΔABH = ΔACH (cạnh huyền - cạnh góc vuông)

Từ đó BH = CH (hai cạnh tương ứng)

b) Từ ΔABH = ΔACH (chứng minh trên) suy ra BM = CN (hai cạnh tương ứng)

Mà AB = AC (chứng minh trên)

Suy ra AM = AB - BM = AN = AC - CN

Trong ΔAMN có AM = AN (chứng minh trên) nên ΔAMN cân tại A

c) (Sửa đề: Chứng minh ba điểm A; H; I thẳng hàng)

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:

a. Xét tam giác $AME$ và $AHE$ có:

$AE$ chung

$\widehat{AEM}=\widehat{AEH}=90^0$

$ME=HE$ (gt)

$\Rightarrow \triangle AME=\triangle AHE$(c.g.c)

$\Rightarrow AM=AH(1)$

Hoàn toàn tương tự ta có $\triangle AHF=\triangle ANF$ (c.g.c)

$\Rightarrow AH=AN(2)$

Từ $(1); (2)\Rightarrow AM=AN$ nên tam giác $AMN$ là tam giác cân tại $A$.

b.

Ta có:

$\frac{HE}{EM}=\frac{HF}{FN}=1$ nên theo định lý Talet thì $EF\parallel MN$ 

c.

Vì tam giác $AMN$ cân tại $A$ (cm ở phần a) nên trung tuyến $AI$ đồng thời là đường cao.

$\Rightarrow AI\perp MN$

Mà $MN\parallel EF$

$\Rightarrow AI\perp EF$ (đpcm)

 

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Hình vẽ:

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=36+64=100=10^2\)

=>BC=10(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{ABC}+\hat{ACB}=90^0\)

=>\(\hat{ABC}=90^0-37^0=53^0\)

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Tư (1),(2) suy ra \(AM\cdot AB=AN\cdot AC\)

a: ΔBAC cân tại A

mà AH là đường cao

nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có

AH chung

góc PAH=góc QAH

=>ΔAPH=ΔAQH

b: Xét ΔABC có AP/AB=AQ/AC

nên PQ//BC

 

a: ΔBAC cân tại A

mà AH là đường cao

nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có

AH chung

góc PAH=góc QAH

=>ΔAPH=ΔAQH

b: Xét ΔABC có AP/AB=AQ/AC

nên PQ//BC

 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC và góc BAH=góc CAH

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>AM=AN

=>ΔAMN cân tại A

a: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

b: Vì ADHE là hình chữ nhật

nên AH=DE

c: Để ADHE là hình vuông thì AH là phân giác của góc DAE

mà AH vuông góc vơi BC

nên ΔABC cân tại A

=>AB=AC