Cho tập hợp S = {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên ba số từ tập S. Tính xác suất của biến cố trong ba số được chọn ra không chứa hai số nguyên liên tiếp nào.
A . p = 5 21
B . p = 5 16
C . p = 3 16
D . p = 5 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: A
S chỉ có 1 tập con
⇔ S = ∅ ⇔ (m - 1; m + 1) ⊂ (-∞; 1].
⇔ m + 1 ≤ 1 ⇔ m ≤ 0
Để \(x=\frac{a-20}{-3}\) ( a ∈ N* ) nhận giá trị dương
=> a - 20 nhận giá trị âm
=> a nhỏ hơn 20
a) S = { a ∈ N* | a < 20 }
\(S=\left\{...;17;18;19\right\}\)
b) ( Không hiểu đề , thông cảm , bạn làm nốt nhé ! )
Chọn A
Cách 1.
Giả sử Đặt
Khi đó
C
1
,
C
2
, C là ba tập con không giao nhau của S và S =
C
1
∪
C
2
∪
C
Khi đó mỗi phần tử x ∈ S có 3 khả năng: Hoặc thuộc tập C 1 hoặc thuộc tập C 2 hoặc thuộc tập C.
Do đó 12 phần tử sẽ có 3 12 cách chọn.
Trong các cách chọn nói trên có 1 trường hợp C 1 = C 2 = ∅ , C = S
Các trường hợp còn lại thì lặp lại 2 lần (đổi vai trò C 1 và C 2 cho nhau).
Do đó số cách chia là
Cách 2.
Đặt S = S 1 ∪ S 2
Nếu
S
1
có k phần tử
Vậy số cách chọn
Nhưng trường hợp giống nhau và không hoán vị nên có
cách
Tập hợp S có số phần tử là:
(166-6) : 4=40 (phần tử)
Cách làm đơn giản thế này thôi bạn nhé! Chúc bạn học tốt.
Chọn D
Xét phép thử: “Chọn ngẫu nhiên ba số từ tập S = {1;2;3;4;5;6;7;8;9}. Ta có
.
Gọi A là biến cố: “trong ba số được chọn ra không chứa hai số nguyên liên tiếp”.
Gọi a 1 , a 2 , a 3 là ba số thỏa mãn
.
Không có hai số nguyên liên tiếp nào
.
Đặt
. Khi đó:
.
Số cách chọn bộ ba số
=> có
C
7
3
cách chọn
a
1
,
a
2
,
a
3
Suy ra![](http://cdn.hoc24.vn/bk/z6UApwfBnMnp.png)
Do đó![](http://cdn.hoc24.vn/bk/Ecsugy3R4b7B.png)