Trong không gian Oxyz, cho điểm M(1;2;3). Biết rằng có tất cả n mặt phẳng dạng đi qua M và cắt các trục tọa độ x'Ox, y'Oy, z'Oz lần lượt tại các điểm A, B, C khác gốc tọa độ O sao cho O.ABC là hình chóp đều. Giá trị của bằng
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
PT
1

CM
7 tháng 6 2018
Đáp án D
Phương pháp: (Oxy): z = 0, (Oyz): x = 0, (Oxz): y = 0
Trục Oy: x = 0 y = t z = 0
Cách giải: M (1;0;3) ∈ (Oxz)
Gọi A(a;0;0), B(0;b;0), C(0;0;c) có
và 
Vì O.ABC là hình chóp đều nên
⇔ O A = O B = O C > 0
Do đó với O A = O B = O C ⇔ a = b = c
Vậy ta có hệ điều kiện:
Vậy ta có ba mặt phẳng thoả mãn là
x+y=z-6=0; x-y-z+4=0; x-y+z-2=0
Vì vậy
Chọn đáp án D.