trên mặt phẳng tọa độ Oxy, cho tam giác ABC cóA(2;1). Gọi M,N lần lượt là trung điểm của đt AB và AC biết BN: x-2y+4=0, CM: 2x+y-6=0. tìm tọa độ của B và C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi B',C' lần lượt là chân đường phân giác kẻ từ B,C xuống lần lượt AC,AB
GỌi i là giao của BB' và CC'
Tọa độ I là:
x-1=0 và x-y-1=0
=>x=1 và y=0
Kẻ IH vuông góc AC tại H
=>H(2;-3)
=>vecto AH=(-2;-2)=(1;1)
Phương trình AH là:
1(x-4)+1(y+1)=0
=>x+y-3=0
=>AC: x+y-3=0
Tọa độ C là:
x+y-3=0 và x-y-1=0
=>C(2;1)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do C thuộc Ox nên tọa độ có dạng: \(C\left(x;0\right)\)
Do trọng tâm G thuộc Oy \(\Rightarrow x_G=0\)
Mà \(x_A+x_B+x_C=3x_G\)
\(\Rightarrow1+\left(-3\right)+x=3.0\)
\(\Rightarrow x=2\)
\(\Rightarrow C\left(2;0\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\overrightarrow{AB}=\left(-3;-2\right)\)
\(\overrightarrow{AC}=\left(-1;0\right)\)
\(\overrightarrow{AB}+\overrightarrow{AC}=\left(-4;-2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi I(a; b) là tâm đường tròn ngoại tiếp tam giác ABC.
A I 2 = B I 2 A I 2 = C I 2 ⇔ a − 0 2 + b − 2 2 = a + 2 2 + b − 8 2 a − 0 2 + b − 2 2 = a + 3 2 + b − 1 2
⇔ a 2 + b 2 − 4 b + 4 = a 2 + 4 a + 4 + b 2 − 16 b + 64 a 2 + b 2 − 4 b + 4 = a 2 + 6 a + 9 + b 2 − 2 b + 1
4 a − 12 b = − 64 6 a + 2 b = − 6 ⇔ a − 3 b = − 16 3 a + b = − 3
⇔ a = − 5 2 b = 9 2
Chọn B.
![](https://rs.olm.vn/images/avt/0.png?1311)
vecto AH=(x+2;y-4); vecto BC=(-6;-2)
vecto BH=(x-4;y-1); vecto AC=(0;-5)
Theo đề, ta có: -6(x+2)-2(y-4)=0 và 0(x-4)-5(y-1)=0
=>y=1 và -6(x+2)=2(y-4)=2*(1-4)=-6
=>x+2=1 và y=1
=>x=-1 và y=1
![](https://rs.olm.vn/images/avt/0.png?1311)
AB (-1,-3)
AC (3,1)
BC (4.4)
Ta co : AB.AC= (-1).(3) + (-3).(1) = 0
suy ra : tam giac ABC vuong tai A
S= 1/2.AB.AC
Ban tu tinh do dai AB, AC nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi I( x; y). Ta có A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .
Do I là tâm đường tròn ngoại tiếp tam giác ABC nên I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2
⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 y − 4 2 = y + 2 2 ⇔ x + 4 2 = x − 2 2 + ( 1 − 4 ) 2 y = 1 ⇔ x 2 + 8 x + 16 = x 2 − 4 x + 4 + 9 y = 1 ⇔ x = − 1 4 y = 1 .
Chọn B.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi \(C\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-6;2\right)\\\overrightarrow{BC}=\left(x+2;-4\right)\end{matrix}\right.\)
Tam giác ABC vuông tại B \(\Leftrightarrow\overrightarrow{AB}.\overrightarrow{BC}=0\)
\(\Rightarrow-6\left(x+2\right)-8=0\) \(\Rightarrow x=-\dfrac{10}{3}\)
\(\Rightarrow C\left(-\dfrac{10}{3};0\right)\)
Bạn tự tính tọa độ \(\overrightarrow{AC};\overrightarrow{BC}\) từ đó suy ra độ dài 3 cạnh và tính được chu vi, diện tích
Do tam giác ABC vuông tại B nên ABCD là hcn khi \(\overrightarrow{AB}=\overrightarrow{DC}\)
Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(-\dfrac{10}{3}-x;-y\right)\)
\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{10}{3}-x=-6\\-y=2\end{matrix}\right.\) \(\Rightarrow D\left(\dfrac{8}{3};-2\right)\)
Gọi G là trọng tâm tam giác \(\Rightarrow\) tọa độ G là nghiệm
\(\left\{{}\begin{matrix}x-2y+4=0\\2x+y-6=0\end{matrix}\right.\) \(\Rightarrow G\left(\frac{8}{5};\frac{14}{5}\right)\)
Gọi P là trung điểm BC, theo tính chất trọng tâm: \(\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AP}\Rightarrow P\left(\frac{7}{5};\frac{37}{10}\right)\)
Gọi \(M\left(a;-2a+6\right)\) \(\Rightarrow\left\{{}\begin{matrix}x_B=2x_M-x_A=2a-2\\y_B=2y_M-y_A=-4a+11\end{matrix}\right.\)
P là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_P-x_B=\frac{24}{5}-2a\\y_C=2y_P-y_B=4a-\frac{18}{5}\end{matrix}\right.\)
N là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}x_N=\frac{x_A+x_C}{2}=\frac{17}{5}-a\\y_N=\frac{y_A+y_C}{2}=2a-\frac{13}{10}\end{matrix}\right.\)
Do N thuộc BN nên:
\(\frac{17}{5}-a-2\left(2a-\frac{13}{10}\right)+4=0\) \(\Rightarrow a=2\)
\(\Rightarrow\left\{{}\begin{matrix}B\left(2;3\right)\\C\left(\frac{4}{5};\frac{22}{5}\right)\end{matrix}\right.\)