Cho tam giác ABC có gốc A=100 độ; gốc B=40 độ. Vẽ tia Ax là tia đối của tia AB, tia Ai là tia phân giác của gốc CA X. Chứng minh AI // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,ta có :M đối xứng vs H qua BC
suy ra BC là đường trung trực của đoạn thẳng BC
mà B thuộc đường trung trực của đoạn thẳng BC =>BM=BH
và C thuộc đường trung trực của đoạn thẳng BC =>CM=CH
xét tam giác BMC và tam giác BHC có:BM=BH (chứng minh trên),MC=MH chứng minh trên BC chung
=> tam giác BMC=BHC
b,trọng tâm gica ABC có AM là đường trung trực đồng thời là đường cao của cạnh BC => tam giác ABC cân
=>góc ABC =góc BCA =(180 độ -60 độ ):2=60 độ
mà BM và CM là đường phân giác (tam giác ABC cân)suy ra góc MBC =góc MBC =60 độ :2=30 độ
=>góc BMC=180 độ -30 độ+30 độ=120độ
mà góc BCM=góc BCH =>góc BHC=120độ
BD là phân giác \(\widehat{ABC}\) (gt).
\(\Rightarrow\) \(\widehat{ABD}=\) \(\dfrac{1}{2}\)\(\widehat{ABC}\) \(=\dfrac{1}{2}.60^o=30^o.\)
Mà \(\widehat{ABD}+\widehat{ADB}=\) \(90^o\) (\(\Delta ABD\) vuông tại A).
\(\Rightarrow\) \(\widehat{ADB}=\) \(90^o-30^o=60^o.\)
\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=30^0\)
nên \(\widehat{ADB}=90^0-30^0=60^0\)
\(\widehat{A}=180^0-\widehat{B}-\widehat{C}=102^0\\ \Rightarrow\widehat{DAC}=\dfrac{1}{2}\widehat{A}=51^0\\ \Rightarrow\widehat{ADC}=180^0-\widehat{DAC}-\widehat{C}=97^0\)
Sửa đề: Tam giác ABC cân tại A, góc A bằng 100 độ. BC=8cm, AC=10cm. Phía ngoài tam giác ABC vẽ tam giác ABD cân tại D, góc ADB bằng 140 độ. Tính chu vi tam giác ABD.
Đối xứng của A qua trục tung là A'(4; -1) và đối xứng của A qua trục hoành là A"(-4; 1).
Vậy đỉnh thứ hai của tam giác cân là I(-4; -1).
Ta có thể tính được hệ số góc của đường thẳng AI bằng công thức:
\(m=\dfrac{y_A-y_I}{x_A-x_I}=\dfrac{1-\left(-1\right)}{4-\left(-4\right)}=\dfrac{1}{4}\)
Vậy phương trình đường thẳng AI là:
\(y-y_A=m\left(x-x_A\right)\)
\(y-1=\dfrac{1}{4}\left(x-4\right)\)
\(4y-4=x-4\)
\(x-4y=0\)
Vậy phương trình đường thẳng cần tìm là \(x-4y=0\)
Đường thẳng đi qua A và tạo với hai trục tọa độ một tam giác cân đỉnh là gốc tọa độ sẽ qua điểm trung điểm của đoạn thẳng BC, ký hiệu là M.
Có:
Tọa độ x của trung điểm M = \(\dfrac{x_B+x_C}{2}=\dfrac{3+1}{2}=2\)
Tọa độ y của trung điểm M = \(\dfrac{y_B+y_C}{2}=\dfrac{2+6}{2}=4\)
Vậy tọa độ của điểm M là (2, 4).
Phương trình đường thẳng đi qua A và M là:
\(y-1=\dfrac{4-1}{2-4}.\left(x-4\right)\Rightarrow y=-1,5x+7\)y
Vậy phương trình đường thẳng cần tìm là \(y=-1,5x+7.\)
(Cái câu kia mình làm cho bài khác tính cop màn hình mà bấm gửi nhầm ở đây, bài giải này mới đúng nhé!)
Trong tam giác ABC có góc BAC + góc B + góc C = 180 độ
=> góc C = 180 độ - (góc A + góc B) = 180 độ - (100 độ + 40 độ) = 180 độ - 140 độ = 40 độ
Ta có AX là tia đối của tia AB => góc BAC + góc CAX = 180 độ
=> góc CAX = 180 độ - góc BAC = 180 độ - 100 độ = 80 độ
Ta có tia AI là tia phân giác của góc CAX
=> góc CAI = góc XAI = góc CAX/2 = 80 độ/2 = 40 độ
Ta có góc C = góc CAI (= 40 độ)
mà 2 góc này có vị trí so le trong
nên AI // BC