Cho 4 số: 25; 35; a và 52. Tìm số a, biết số a lớn hơn trung bình cộng của bốn số 5 đơn vị. Trả lời: a =…
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta học rồi nếu trong một tổng mà có một số chia hết cho số chia thì chắc chắn tổng đó sẽ chia hết cho số đó
Ta có:25 chia hết cho 26
=>A= 75(4^2004+4^2003+...+4+1)+25 chia hết cho 25
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\dfrac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+...+25^2+1}\)
\(=\dfrac{25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+...+\left(25^4+1\right)}{25^{28}\left(25^2+1\right)+25^{24}\left(25^2+1\right)+...+\left(25^2+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}{\left(25^2+1\right)\left(25^{28}+25^{24}+...+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\cdot\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}{\left(25^2+1\right)\left[25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+25^8\left(25^4+1\right)+\left(25^4+1\right)\right]}\)
\(=\dfrac{\left(25^4+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}\)
\(=\dfrac{1}{25^2+1}=\dfrac{1}{626}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trong 25 số đã cho có ít nhất 1 số là số dương ﴾vì nếu 25 số đã cho đều âm thì tổng của 4 số bất kỳ không thể là 1 số dương﴿.
Tách riêng số dương đó ra còn 24 số, nhóm 4 số vào 1 nhóm thì được 6 nhóm. Trong đó nhóm nào cũng là 1 số dương
=> Tổng của 24 số là 1 số dương cộng thêm 1 số dương đã tách.
Vậy tổng của 25 số đó là 1 số dương.
![](https://rs.olm.vn/images/avt/0.png?1311)
Do \(25\equiv1\left(mod4\right)\Rightarrow25^2\equiv1\left(mod4\right)\)
Tương tự \(25^3\equiv1\left(mod4\right)25^4\equiv1\left(mod4\right);......;25^{99}\equiv1\left(mod4\right)\)
Khi đó \(A=25+25^2+25^3+.....+25^{99}\equiv99\left(mod4\right)\equiv3\left(mod4\right)\)
Vậy A không là số chính phương vì A chia 4 dư 3.
Do \(25\equiv1\left(mod4\right)\Rightarrow25^2\equiv1\left(mod4\right)\)
Tương tự \(25^3\equiv1\left(mod4\right)25^4\equiv1\left(mod4\right);......;25^{99}\equiv1\left(mod4\right)\)
Khi đó \(A=25+25^2+25^3+.....+25^{99}\equiv99\left(mod4\right)\equiv3\left(mod4\right)\)
Vậy A không là số chính phương vì A chia 4 dư 3.
trung bình cộng của 4 số là :
`(25 + 35 + a + 52)/4 = (112 + a)/4 = 112/4 + a/4= 28 + a/4`
Theo bài ra ta có :
`a = 28 + a/4 + 5`
`=> a = a/4 + 33`
`=> 4a/4 = a/4 + 132/4`
`=> 4a = a + 132`
`=> 4a - a = 132`
`=> 3a = 132`
`=> a = 132: 3`
`=> a = 44`
Đáp số :`44`
|------|------|------|------| Tổng 4 số
|------|--| Số a
Tổng 3 số là
25+35+52=112
Nhìn trên sơ đồ đoạn thẳng ta thấy 3 lần TBC của 4 số là
112+5=117
TBC của 4 số là
117:3=39
Số a là
9+5=14