cho tam giac ABC vuong tại A. các đường phân giác trong của goc B và C cắt nhau tại O. biết AB=2; OC= căn 3 . tính độ dài cạnh BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


hình tự vẽ
a, Xét tam giác AHB và AHC
AB=AC(đề bài)
góc BAH=HAC(AH là tia phân giác góc BAC)
AH là cạnh chung
=> tam giác AHB=AHC(C.G.C)
b,Vì tam giác AHB=AHC(câu a)
=> góc BHA=góc AHC( 2 cạnh tương ứng)
Mà BHA+ AHC=180 độ(2 góc kề bù)
=> BHA=AHC=1/2*180 độ
= 90 độ
=> AH vuông góc với BC.

a: góc IBC+góc ICB=1/2(góc ABC+góc ACB)
=1/2(180-60)=60 độ
=>góc BIC=120 độ
b: Xét ΔABC có
BD,CE là đường phân giác
BD cắt CE tại I
=>I là tâm đường tròn nội tiếp
=>AI là phân giác của góc BAC
=>góc BAI=góc CAI=60/2=30 độ
c: Xét ΔABC có I là tâm đường tròn nội tiếp
nên I cách đều ba cạnh của tam giác

A B C H I a) Xét tam giác AHB và tam giác AHC:
AB=AC(gt)
\(\widehat{BAH}\) =\(\widehat{CAH}\) (gt)
AH là cạnh chung
=>\(\Delta AHB=\Delta AHC\)
b) Từ câu a) =>\(\widehat{AHB}\) =\(\widehat{AHC}\)(2 góc tương ứng) (*)
Ta có:\(\widehat{AHB}\) + \(\widehat{AHC}\) =180 độ (**)
Từ (*) và (**) =>\(\widehat{AHB}\) =\(\widehat{AHC}\) =\(\frac{180}{2}\)=90 độ
Vậy AH\(⊥\)BC
c) Từ câu a)=> \(\widehat{B}\)=\(\widehat{C}\) (2 góc tương ứng);BH=HC(2 cạnh tương ứng)
Ta có:\(\widehat{DHB}\)=180 độ -\(\widehat{BDH}\) -\(\widehat{DBH}\)
\(\widehat{EHC}\)=180 độ -\(\widehat{HEC}\) -\(\widehat{ECH}\)
Mà \(\widehat{B}\)=\(\widehat{C}\) (cmt)
=>\(\widehat{DHB}\)=\(\widehat{EHC}\)
=>\(\Delta DHB=\Delta EHC\)(g.c.g)
=>DB=EC
Ta có:AD=AB-BD
AE=AC-EC
Mà BD=EC;AB=AC
=>AD=AE
Xét \(\Delta ADI\) và \(\Delta AEI\)
AD=AE (cmt)
\(\widehat{DAI}\)=\(\widehat{EAI}\)(gt)
AH là cạnh chung
=>\(\Delta ADI\)=\(\Delta AEI\)(c.g.c)
=>\(\widehat{AID}\)=\(\widehat{AIE}\)=\(\frac{180}{2}\)=90(tương tự câu b)
=>AH\(⊥\)DE
Vì DE\(⊥\) AH;BC\(⊥\)AH,Vậy DE song song BC