Cho tam giác MNP vuông tại P, biết MP = 9cm; NP = 12cm. Độ dài cạnh MN là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tam giác MNP vuông góc tại M:
- áp dụng định lí Pytago ta có
NP2=MN2+MP2
=> NP2=92+122
=> NP2=225
=> NP=15cm
xét tam giác MNP vuông góc tại M có MQ là đường trung tuyến
=>MQ=1/2NP=1/2.15=7,5(cm)
Xét tam giác MNP vuông tại M:
\(NP^2=MN^2+MP^2\left(pytago\right)\)
\(\Rightarrow NP^2=9^2+12^2=225\Rightarrow NP=15\left(cm\right)\)
Xét tam giác MNP vuông tại M có MQ là trung tuyến
\(\Rightarrow MQ=\dfrac{1}{2}NP=\dfrac{1}{2}.15=7,5\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: MP=12cm
b: Xét ΔNMD và ΔNED có
NM=NE
\(\widehat{MND}=\widehat{END}\)
ND chung
Do đó:ΔNMD=ΔNED
Suy ra: DM=DE
hay ΔDME cân tại D
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Ta có: ΔMNP vuông tại M
=>\(MN^2+MP^2=NP^2\)
=>\(NP^2=9^2+12^2=225\)
=>\(NP=\sqrt{225}=15\left(cm\right)\)
Xét ΔMNP có MI là phân giác
nên \(\dfrac{IN}{MN}=\dfrac{IP}{MP}\)
=>\(\dfrac{IN}{9}=\dfrac{IP}{12}\)
=>\(\dfrac{IN}{3}=\dfrac{IP}{4}\)
mà IN+IP=NP=5cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{IN}{3}=\dfrac{IP}{4}=\dfrac{IN+IP}{3+4}=\dfrac{5}{7}\)
=>\(IN=3\cdot\dfrac{5}{7}=\dfrac{15}{7}\left(cm\right);IP=5\cdot\dfrac{4}{7}=\dfrac{20}{7}\left(cm\right)\)
b: Diện tích tam giác MNP là:
\(S_{MNP}=\dfrac{1}{2}\cdot MN\cdot MP=\dfrac{1}{2}\cdot9\cdot12=54\left(cm^2\right)\)
Ta có: \(\dfrac{IN}{3}=\dfrac{IP}{4}\)
=>\(\dfrac{IN}{IP}=\dfrac{3}{4}\)
=>\(\dfrac{IN}{IP+IN}=\dfrac{3}{7}\)
=>\(\dfrac{IN}{PN}=\dfrac{3}{7}\)
=>\(S_{MNI}=\dfrac{3}{7}\cdot S_{MNP}=\dfrac{3}{7}\cdot54=\dfrac{162}{7}\left(cm^2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(MN+MP=34\)
\(MN-MP=14\)
\(\Rightarrow2MP=34-14=20\)
\(\Rightarrow MP=10\left(cm\right),MN=34-10=24\left(cm\right)\)
\(Pytago:\)
\(NP=\sqrt{10^2+24^2}=26\left(cm\right)\)
Ta có: \(\left\{{}\begin{matrix}MN+MP=34\\MN-MP=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2MN=48\\MP+MN=34\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MN=24\\MP=10\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(NP^2=MN^2+MP^2\)
\(\Leftrightarrow NP^2=10^2+24^2=676\)
hay NP=26(cm)
Vậy: MN=10cm; MP=24cm; NP=26cm
![](https://rs.olm.vn/images/avt/0.png?1311)
MK là phân giác góc ngoài
=>KN/KP=MN/MP
=>KN/KN+8=9/15=3/5
=>5KN=3KN+24
=>KN=12cm
\(MN=\sqrt{9^2+12^2}=15\left(cm\right)\)
MN=15cm