Cho tam giác ABC; M là trung điểm BC; N là 1 điểm trong tam giác sao cho NB = NC.
Chứng minh: ∆NMB = ∆ NMC và góc MBN=góc MCN
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan

30 tháng 6 2016
Mik ko giải chi tiết đc p thứ lỗi nhé: Đ/S:
Lấy H sao cho BH = 1 cm

2 tháng 5 2017
A B C G M
Giải:
a, Ta có: \(AB^2+AC^2=6^2+8^2=100\)
\(BC^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( đpcm )
b, \(\Delta ABC\) vuông tại A có AM là trung tuyến
\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow AM=5\)
Mà \(AG=\dfrac{2}{3}.AM\Rightarrow AG=\dfrac{10}{3}\left(cm\right)\)
Vậy...
Xét hai tam giác NMB và NMC có:
BM=MC (vì M là trung điểm)
NM là cạnh chung
NB=NC(gt)
=> tam giác NMB= tam giác NMC \(\left(\Delta\right)\)
Chúc bạn học tốt !!!