K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn có nhầm câu B không vậy ạ!?? Đg trung trực là đường vuông góc tại trung điểm của 1 đoạn thẳng mà. Còn BE thì nhìn hình thôi cũng đâu vuông góc với AE... Bạn xem kĩ lại đề giúp mình nhé? Rồi mình giải cho... Bạn xem coi có nhầm "BD là đg trung trực của AE" với "BE là đg trung trực của AE' không á? :)))

hơi dài ak nha!!!!!!!!!!!!

6585447

29 tháng 7 2016

Ta có : tam giác ABC vuông cân => ABC = BCA = 45 độ

Và tam giác BCD vuông cân => BCD = BDC = 450

=> Tứ giác ABCD = ABC + BCD = 45 + 45 = 90 độ

Vậy tứ giác ABCD là tứ giác vuông

28 tháng 8 2016

câu này dc tick à, zui nhỉ

27 tháng 1 2022

giúp em với ạ mọi người thank moi người nhiều nha

 

27 tháng 1 2022

10p nha e

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

Xét ΔHAC và ΔABC có

góc H=góc A

góc C chung

=>ΔHAC đồng dạngvới ΔABC

b: Xet ΔABC vuông tại A có AH vuông góc BC

nên AB*AC=AH*BC; AB^2=BH*BC; AC^2=CH*CB; HA^2=HB*HC; 1/AH^2=1/AB^2+1/AC^2

30 tháng 12 2020

cho tam giác abc vuông tại A (AB<AC) ke Ah vuông với bc tại h trê cạnh ac lấy điểm d sao cho ad=ah gọi e là trung điểm của hd tia ae cắt bc tai f cm a) tam giác ahe= tam giác ade và ae vuông tại hd b) tam giác ahf = tam giác adf c) góc dfc= góc abc

27 tháng 10 2021

d

30 tháng 4 2022

Xét \(\triangle ABD\) vuông tại \(A\) và \(\triangle HBD\) vuông tại H \(( DH \bot BC)\) ta có :

\(\widehat{ABD}=\widehat{HBD}\) ( tia phân giác của \(\widehat{ABC}\) cắt \(AC\) tại \(D\) )

Chung \(BD\)

\(\Rightarrow\) \(\triangle ABD\) \(=\) \(\triangle HBD\) ( ch - gn )

\(\Rightarrow AB = BH\) ( \(2\) cạnh tương ứng ) (1) 

Do \(\begin{cases} \widehat{BAD} = 90^o\\ \widehat{BHD} = 90^0\end{cases}\)

\(\Rightarrow \widehat{KAD} = \widehat{CHD} = 90^o\)

Xét \(\triangle AKD\) vuông tại \(A\) và \(\triangle HCD\) vuông tại \(H\) ta có :

\(\widehat{ADK} = \widehat{HDC}\) ( \(2\) góc đối đỉnh ) 

\(AD=DH \) ( \(\triangle ABD = \) \(\triangle HBD\) )

\(\Rightarrow\) \(\triangle AKD=\) \(\triangle HCD\) ( cgv - gnk )

\(\Rightarrow AK = CH\) ( \(2\) cạnh tương ứng ) (2) 

Từ (1) và (2)

\(\Rightarrow AB+AK = BH+CH\)

\(\Leftrightarrow BK=BC\)

\(\Rightarrow \triangle KBC\) cân tại \(B\)

 

 

30 tháng 4 2022

Hình vẽ :

undefined

29 tháng 8 2014

Có AB^2 = BC . BH

AC^2 = BC . CH

AB^2 : AC^2 = (BC . BH ) : ( BC . CH) 

400/ 441 = BH / CH suy ra BH= 400/ 441 . CH

mà AH2 = BH . CH= CH2 . 400 /441

2402 = CH2 . 400/441

suy ra CH= 252

từ đó tính tiếp nhé