ho tg ABC có AB=5; AC=12; BC=13
chừng minh tg ABC vuông tại A và tính độ dài đường cao AH
kẻ HE ⊥AB tại E , HF⊥AC tại F chúng minh AE.AB=AC.AF
chứng minh tg AEF và tg ABC đồng dạng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Py-ta-go trong tam giác vuông AHB ta được: \(AH=\sqrt{AB^2-BH^2}=\sqrt{10^2-5^2}=5\sqrt{3}cm\)
Ta có: \(AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{\left(5\sqrt{3}\right)^2}{5}=15cm\)
\(\tan B=\frac{AH}{BH}=\frac{5\sqrt{3}}{5}=\sqrt{3}\) (1) \(\tan C=\frac{AH}{CH}=\frac{5\sqrt{3}}{15}=\frac{1}{\sqrt{3}}\)(2)
Lấy \(\frac{\left(1\right)}{\left(2\right)}=\frac{\tan B}{\tan C}=\frac{\sqrt{3}}{\frac{1}{\sqrt{3}}}=3\Rightarrow tanB=3tanC\) Vậy tanB = 3tanC
A B C H E F
a) Ta có: \(5^2+12^2=169\)
\(13^2=169\)
suy ra: \(5^2+12^2=13^2\)
Vậy tam giác ABC vuông tại A
Áp dụng hệ thức lượng ta có:
\(AB.AC=AH.BC\)
\(\Leftrightarrow\)\(AH=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}\)
b) Áp dụng hệ thức lượng ta có:
\(AH^2=AE.AB\)
\(AH^2=AF.AC\)
suy ra: \(AE.AB=AF.AC\)
c) \(AE.AB=AF.AC\) \(\Rightarrow\)\(\frac{AE}{AC}=\frac{AF}{AB}\)
Xét \(\Delta AEF\)và \(\Delta ACB\)ta có:
\(\frac{AE}{AC}=\frac{AF}{AB}\)
góc A chung
suy ra: \(\Delta AEF~\Delta ACB\)(c.g.c)
Ta có: \(AC^2+BC^2=\left(a\sqrt{2}\right)^2+\left(a\sqrt{3}\right)^2=2a^2+3a^2=5a^2\)
\(AB^2=\left(a\sqrt{5}\right)^2=5a^2\)
=> \(AB^2=AC^2+BC^2\)
=> Tam giác ABC vuông tại C (định lí Pytago đảo)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
\(AH=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)
b: Xét ΔAHB vuông tai H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
c:Ta có \(AE\cdot AB=AF\cdot AC\)
nên AE/AC=AF/AB
Xét ΔAEF và ΔACB có
AE/AC=AF/AB
góc BAC chung
Do đo: ΔAEF đồng dạng với ΔACB