Trong không gian tọa độ Oxyz, mặt phẳng chứa trục Oz và đi qua điểm I 1 ; 2 ; 3 có phương trình là
A. 2 x - y = 0
B. z - 3 = 0
C. x - 1 = 0
D. y - 2 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Ta có O M → = ( 3 ; - 4 ; 7 )
Vecto chỉ phương của trục Oz là k → = ( 0 ; 0 ; 1 )
Mặt phẳng (P) đi qua điểm M(3;-4;7) có vecto pháp tuyến
Vậy phương trình mặt phẳng
mặt phẳng
α
chứa trục Oz nên phương trình có dạng
Lại có
α
đi qua điểm P(2;-3;5) nên
Vậy phương trình mặt phẳng α : 3x + 2y = 0
Chọn C.
Đáp án A
Gọi N(0;1;0) là điểm thuộc trục Oy ⇒ M N → = ( - 1 ; 0 ; 1 )
Gọi ⇒ u → = ( 0 ; 1 ; 0 ) là một véc tơ chỉ phương của đường thẳng Oy.
là một véc tơ pháp tuyến của (P)
Suy ra phương trình mp(P) là
Ta có: O M ⇀ ( 1 ; 1 ; - 1 ) ; j ⇀ ( 0 ; 1 ; 0 )
Mặt phẳng (P) chứa trục Oy và đi qua điểm M(1;1-1) có một VTPT là n ⇀ = O M ⇀ ; j ⇀ = 1 ; 0 ; 1
Phương trình (P) là: 1 ( x - 0 ) + 0 + 1 ( z - 0 ) = 0 ⇔ x + z = 0
Chọn đáp án D.
Đáp án A.
Ta có A M ⊥ B C ⊥ O A ⇒ B C ⊥ O A M ⇒ B C ⊥ O M
Tương tự ta cũng có O M ⊥ A C ⇒ O M ⊥ P ⇒ P (P) nhận O M ¯ = 3 ; 2 ; 1 là vecto pháp tuyến.
Trong các đáp án, chọn đáp án mặt phẳng có vecto pháp tuyến có cùng giá với O M ¯ và không chứa điểm M thì thỏa.
Mặt phẳng chứa trục Oz Þ mặt phẳng cần tìm có 1 VTCP là k → 0 ; 1 ; 1
⇒ k → ⊥ n → với n → là VTPT của mặt phẳng cần tìm.
Xét đáp án A: có n → 2 ; - 1 ; 0 ⇒ n → . k → = 2 . 0 + - 1 . 0 + 0 . 1 = 0
Thay tọa độ điểm I 1 ; 2 ; 3 vào phương trình ta được: 2 . 1 - 2 = 0 thỏa mãn
Chọn A.