Có nhiều nhất bao nhiêu số nguyên m thuộc nửa khoảng để phương trình có nghiệm:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.
mình trình bày hơi dài mong bạn thông cảm

Ta có yêu cầu bài toán tương đương với:
Vậy có tất cả 7 số nguyên thoả mãn.
Chọn đáp án B.

Chọn đáp án B.
Ta có yêu cầu bài toán tương đương với
y ' = m x 9 - x 2 ( 9 - x 2 - m ) 2 > 0 , ∀ x ∈ 0 ; 5
Vậy có tất cả 7 số nguyên thoả mãn.
Phương trình đã cho tương đương với: x ≥ 2 2 x 2 − x − 2 m = x 2 − 4 x + 4 ⇔ x ≥ 2 x 2 + 3 x − 4 = 2 m
Xét hàm y = x 2 + 3 x − 4 trên 2 ; + ∞ ta có
BBT:
Để phương trình đã cho có nghiệm điều kiện là 2 m ≥ 6 ⇔ m ≥ 3
Mà m ∈ [ - 2017 ; 2017 ) suy ra 3 ≤ m < 2017
Vậy có nhiều nhất 2014 số nguyên thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: A