Giá trị lớn nhất và nhỏ nhất của hàm số y = 4x - 2x+1 trên đoạn [- 1;1]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:
$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$
Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$
Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.
Câu 2:
Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$
Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$
Với $x\in (1;3)$ thì hàm luôn nghịch biến
$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$
$\Rightarrow$ hàm không có min, max.

TXĐ: D = (-∞; 5/4]
với ∀ x ∈ (-∞; 5/4)
⇒ Hàm số nghịch biến trên (-∞; 5/4)
⇒ Hàm số nghịch biến trên [-1; 1]

Trên đoạn [-1; 1], ta có :
y = log 5 x
Do đó, trên đoạn [0;1] hàm số đồng biến, trên đoạn [-1;0] hàm số nghịch biến. Suy ra các giá trị lớn nhất và giá trị nhỏ nhất sẽ đạt được tại các đầu mút.
Ta có: y(−1) = 2 - - 1 = 2 1 = 2, y(0) = 2 0 = 1, y(1) = 2 1 = 2
Vậy max y = y(1) = y(−1) = 2, min y = y(0) = 1.

Trên đoạn [-1; 1], ta có :
y = log 5 x
Do đó, trên đoạn [0;1] hàm số đồng biến, trên đoạn [-1;0] hàm số nghịch biến. Suy ra các giá trị lớn nhất và giá trị nhỏ nhất sẽ đạt được tại các đầu mút.
Ta có: y(−1) = 2 - ( - 1 ) = 2 1 = 2, y(0) = 2 0 = 1, y(1) = 2 1 = 2
Vậy max y = y(1) = y(−1) = 2, min y = y(0) = 1.
Chọn D.
Ta có: y = 22x - 2.2x . Đặt
Xét hàm số f(t) = t2 - 2t trên đoạn
ta có: f’(t) = 2t - 2 và f’(t) = khi t = 1
Hàm số f(t) xác định và liên tục trên đoạn
Lại có f(0,5) = 3/4; f(1) = -1; f(2) = 0 . Do đó