Bài 3: Cho (d1): y = -2x ; (d2): y = x – 3 ; (d3): y = mx + 4 a) Tìm tọa độ giao điểm của hai đường thẳng d1 và d2 b) Tìm các giá trị tham số m để 3 đường thẳng d1, d2, d3 đồng quy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
PT hoành độ giao điểm \(\left(d_1\right)\) và \(\left(d_2\right)\)
\(2x+1=3x-1\Leftrightarrow x=2\Leftrightarrow y=5\Leftrightarrow A\left(2;5\right)\)
Thay \(x=2;y=5\) vào \(\left(d_3\right)\Leftrightarrow2+3=5\) (đúng)
Do đó \(A\left(2;5\right)\in\left(d_3\right)\)
Vậy \(\left(d_1\right);\left(d_2\right);\left(d_3\right)\) đồng quy tại \(A\left(2;5\right)\)
\(\left\{{}\begin{matrix}2x+1=3x-1\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
Thay x=2 và y=5 vào y=x+3, ta được:
2+3=5(đúng)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do giao điểm có tung độ bằng 3 nên hoành độ thỏa mãn:
\(3=-2x+1\Rightarrow x=-1\)
Thế tọa độ giao điểm vào pt d2 ta được:
\(3=-\left(2m-3\right)+3-m\)
\(\Rightarrow-3m+3=0\Rightarrow m=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
BÀI 1
để d1 và d2 // thì: m-3=-1(1) ; m khác 3 (2)
ta có: (1) <=> m=2 (3)
từ (2) và (3) => để d1//d2 thì m = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3:
Vì (d)//(d1) nên a=3
Vậy: (d): y=3x+b
Thay \(x=\dfrac{2}{3}\) và y=0 vào (d), ta được:
\(b+2=0\)
hay b=-2
![](https://rs.olm.vn/images/avt/0.png?1311)
bài này dễ mà bạn :
\(d_1,d_2\)cắt nhau tại diểm có tung độ là 3 nên hoành độ của giao điểm là :
(thay \(y=3\)vào \(d_1\)) \(3=-2x+1\Leftrightarrow-2x=2\Leftrightarrow x=-1\)Tọa độ của giao điểm cũng thỏa mãn phương trình \(d_2\)nên: \(3=-\left(2m-3\right)+3-m\Leftrightarrow-3m=-3\)\(\Leftrightarrow m=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2:
a:
b: Tọa độ giao điểm là nghiệm của hệ:
x-1=-2x+2 và y=x-1
=>3x=3 và y=x-1
=>x=1 và y=1-1=0
1:
a: Thay x=-1 và y=0 vào (d), ta được:
m+1=0
=>m=-1
c: tọa độ giao điểm là:
2x-2=-x+4 và y=2x-2
=>3x=6 và y=2x-2
=>x=2 và y=4-2=2
Thay x=2 và y=2 vào (d), ta được:
m-2=2
=>m=4
![](https://rs.olm.vn/images/avt/0.png?1311)
Khi m=3 thì (d): y=2x+3
Lấy A(0;3) thuộc (d)
(d1): y=2x-3
=>2x-y-3=0
\(h\left(A;d1\right)=\dfrac{\left|0\cdot2+\left(-1\right)\cdot3+\left(-3\right)\right|}{\sqrt{2^2+1^2}}=\dfrac{6}{\sqrt{5}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Tọa độ A là:
\(\left\{{}\begin{matrix}x+2=-x-2\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=-4\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-2+2=0\end{matrix}\right.\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x+2=-2x+2\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=0\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0+2=2\end{matrix}\right.\)
Tọa độ C là:
\(\left\{{}\begin{matrix}-x-2=-2x+2\\y=-x-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=4\\y=-4-2=-6\end{matrix}\right.\)
Vậy: A(-2;0); B(0;2); C(4;-6)
b: \(AB=\sqrt{\left(0+2\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)
\(AC=\sqrt{\left(4+2\right)^2+\left(-6-0\right)^2}=6\sqrt{2}\)
\(BC=\sqrt{\left(4-0\right)^2+\left(-6-2\right)^2}=\sqrt{4^2+8^2}=4\sqrt{5}\)
Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=0\)
=>\(\widehat{BAC}=90^0\)
=>ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\sqrt{2}\cdot6\sqrt{2}=12\)
a. PTTDGD của (d1) và (d2):
\(-2x=x-3\)
\(\Rightarrow x=1\)
Thay x = 1 vào (d1): \(y=-2\cdot1=-2\)
Vậy (d1) cắt (d2) tại điểm A(1;-2)
Lời giải:
a. PT hoành độ giao điểm: $-2x=x-3$
$\Leftrightarrow x=1$
$y=-2x=1(-2)=-2$
Vậy giao điểm của $(d_1), (d_2)$ là $(1,-2)$
b.
Để $(d_1), (d_2), (d_3)$ đồng quy thì $(d_3)$ cũng đi qua giao điểm của $(d_1), (d_2)$
Tức là $(1,-2)\in (d_3)$
$\Leftrightarrow -2=m.1+4\Leftrightarrow m=-6$