K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2021

\(x^2-xy+y+1=0\)

\(\Leftrightarrow\left(x^2-1\right)-y\left(x-1\right)+2=0\)

\(\Leftrightarrow\left(x+1-y\right)\left(x-1\right)=-2\)

\(\Rightarrow x-1;x+1-y\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\)

x - 11-12-2
x + 1 - y2-21-1
x203-1
y1331

bảng mình xét nhầm nhé phải là như này : 

x - 11-12-2
x + 1 - y -22-11
x203-1
y5-151
NV
19 tháng 1 2024

\(\Leftrightarrow\left(x^2-1\right)-\left(xy+y\right)=3\)

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)-y\left(x+1\right)=3\)

\(\Leftrightarrow\left(x+1\right)\left(x-y-1\right)=3\)

Ta có bảng sau:

x+1-3-113
x-y-1-1-331
x-4-202
y-40-40

Vậy \(\left(x;y\right)=\left(-4;-4\right);\left(-2;0\right);\left(0;-4\right);\left(2;0\right)\)

24 tháng 8 2016

xy + 3y - 5x = 9 nhé...mình viết nhầm ạ

 

24 tháng 8 2016

11=1x11=11x1=-1x-11=-11x-1

TH1:

2x-1=1                            y+4=11

2x=2                                y=7

x=1

TH2:

2x-1=11                            y+4=1

2x=12                                y=-5

x=6

TH3:

2x-1=-1                            y+4=-11

2x=-2                                y=-15

x=-1

TH4:

2x-1=-11                            y+4=-1

2x=-10                                y=-5

x=-5

4 tháng 5 2023

Gợi ý:
\(2xy+14x+y=33\)
\(\Rightarrow2x\left(y+7\right)+y+7=33+7\)
\(\Rightarrow\left(2x+1\right)\left(y+7\right)=40\)
\(\Rightarrow\left(2x+1;y+7\right)\inƯ\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Đến đây thì bạn làm tiếp nhé!

7 tháng 2

Nhóm các hạng tử có chứa 𝑥 x và 𝑦 y: 2 𝑥 𝑦 + 14 𝑥 + 𝑦 = 33 2xy+14x+y=33 Nhóm các hạng tử có chứa 𝑥 x và 𝑦 y: 2 𝑥 ( 𝑦 + 7 ) + 𝑦 = 33 2x(y+7)+y=33 Biến đổi phương trình: 2 𝑥 ( 𝑦 + 7 ) + 𝑦 = 33 2x(y+7)+y=33 Thêm 7 vào cả hai vế: 2 𝑥 ( 𝑦 + 7 ) + ( 𝑦 + 7 ) = 40 2x(y+7)+(y+7)=40 Nhân vế trái: ( 𝑦 + 7 ) ( 2 𝑥 + 1 ) = 40 (y+7)(2x+1)=40 Tìm các cặp số nguyên 𝑥 x và 𝑦 y thỏa mãn: Ta xét các ước của 40: ± 1 , ± 2 , ± 4 , ± 5 , ± 8 , ± 10 , ± 20 , ± 40 ±1,±2,±4,±5,±8,±10,±20,±40. Vì 2 𝑥 + 1 2x+1 là số lẻ, nên 𝑦 + 7 y+7 phải là một trong các ước lẻ của 40: ± 1 , ± 5 ±1,±5. Từ đó, ta có các trường hợp sau: Trường hợp 1: 𝑦 + 7 = 1 y+7=1 và 2 𝑥 + 1 = 40 2x+1=40 Giải hệ: 𝑦 = − 6 , 𝑥 = 19 y=−6,x=19 Trường hợp 2: 𝑦 + 7 = − 1 y+7=−1 và 2 𝑥 + 1 = − 40 2x+1=−40 Giải hệ: 𝑦 = − 8 , 𝑥 = − 21 y=−8,x=−21 Trường hợp 3: 𝑦 + 7 = 5 y+7=5 và 2 𝑥 + 1 = 8 2x+1=8 Giải hệ: 𝑦 = − 2 , 𝑥 = 3 y=−2,x=3 Trường hợp 4: 𝑦 + 7 = − 5 y+7=−5 và 2 𝑥 + 1 = − 8 2x+1=−8 Giải hệ: 𝑦 = − 12 , 𝑥 = − 9 y=−12,x=−9 Kết luận: Các cặp số nguyên 𝑥 x và 𝑦 y thỏa mãn phương trình là: ( 𝑥 , 𝑦 ) = ( 19 , − 6 ) , ( − 21 , − 8 ) , ( 3 , − 2 ) , ( − 9 , − 12 ) (x,y)=(19,−6),(−21,−8),(3,−2),(−9,−12) Vậy, các nghiệm của phương trình là ( 𝑥 , 𝑦 ) = ( 19 , − 6 ) , ( − 21 , − 8 ) , ( 3 , − 2 ) , ( − 9 , − 12 ) (x,y)=(19,−6),(−21,−8),(3,−2),(−9,−12).

2y-14x+y=33

=>3y-14x=33

=>3y=14x+33

=>y=14/3x+11

=>x chia hết cho 3 và y=14/3x+11