K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 giờ trước (15:59)

2/5 × X = 3/4

X = 3/4 : 2/5

X = 15/8

13 giờ trước (16:38)

\(\dfrac{4-x}{3}=\dfrac{x-2}{5}\)
\(\left(4-x\right).5=\left(x-2\right).3\)
\(20-5x=3x-6\)
\(5x+3x=20+6\)
\(8x=26\)
\(x=26:8\)
\(x=\dfrac{26}{8}\)
\(x=\dfrac{13}{4}\)
Vậy \(x=\dfrac{13}{4}\)

a: Xét ΔBAE và ΔBDE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔBAE=ΔBDE

=>EA=ED

=>ΔEAD cân tại E

b: BA=BD

=>B nằm trên đường trung trực của AD(1)

Ta có: EA=ED

=>E nằm trên đường trung trực của AD(2)

Từ (1),(2) suy ra BE là đường trung trực của AD

=>BE\(\perp\)AD tại H và H là trung điểm của AD

ΔDHE vuông tại H

=>DE là cạnh huyền

=>DE là cạnh lớn nhất trong ΔDHE

=>DE>HD

\(\widehat{DAM}=\widehat{DAC}+\widehat{MAC}=90^0+\widehat{DAC}>90^0\)

Xét ΔDAM có \(\widehat{DAM}>90^0\)

nên DM là cạnh lớn nhất trong ΔDAM

=>DM>DA

mà DA=2DH

nên DM>2DH

c: Xét ΔADF có

H là trung điểm của AD

HE//DF

DO đó: E là trung điểm của AF

Xét ΔADF có

FH,DE là các đường trung tuyến

FH cắt DE tại K

DO đó: K là trọng tâm của ΔADF

=>KD=2KE

19 tháng 2

Giải:

Lấy 1993 số khác nhau trong đó mỗi số đều gồm toàn chữ số 1:

Khi chia một số cho 1993 thì có các số dư là:

0; 1; 2;... ;1992

Số số dư có thể là:

(1992 - 0) : 1 + 1 = 1993

Như vậy trong 1993 số khác nhau mà mỗi số gồm toàn chữ số 1 thì nhất định phải có một số có số dư là 0 khi chia cho 1993.

Vậy luôn tồn tại một số gồm toàn chữ số 1 chia hết cho 1993(đpcm)



Gọi số quả trứng của của các loại 1; 2; 3 mà người đó mua được lần lượt là: \(x;y;z\) ( quả, \(x;y;z\in N\)*
Theo bài ra, ta có:
\(x.4000=y.3000=z.2000\)
\(\Rightarrow x.4=y.3=z.2\)
\(\Rightarrow\dfrac{4x}{12}=\dfrac{3y}{12}=\dfrac{2z}{12}\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{6}\) và \(x+y+z=65\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x+y+z}{3+4+6}=\dfrac{65}{13}=5\)
Do đó: 
\(\dfrac{x}{3}=5\) nên \(x=5.3=15\)
\(\dfrac{y}{4}=5\) nên \(y=5.4=20\)
\(\dfrac{z}{6}=5\) nên \(z=5.6=30\)
Vậy số quả trứng của các loại 1; 2; 3 mà người đó mua được lần lượt là:\(15\) quả; \(20\) quả;  \(30\) quả.

18 tháng 2

Số lượng giờ làm việc để hoàn thành công việc đó: 8 x 30 = 240 (giờ)

Nếu tăng thêm 10 người thì số lượng công nhân hiện tại là: 30 + 10 = 40 (người)

Số giờ hoàn thành mỗi người cần làm: 240 : 40 = 6 (giờ)

Công việc của mỗi người cần làm giảm bớt được: 8 - 6 = 2 (giờ)

Đáp số: 2 giờ

a) Tìm tổng P(x)+Q(x)P(x) + Q(x)Ta có các đa thức:P(x)=x4−5x3+4x−5P(x) = x^4 - 5x^3 + 4x - 5Q(x)=−x4+3x2+2x+1Q(x) = -x^4 + 3x^2 + 2x + 1Để tìm tổng P(x)+Q(x)P(x) + Q(x), ta cộng các hệ số của các bậc tương ứng.P(x)+Q(x)=(x4−5x3+4x−5)+(−x4+3x2+2x+1)P(x) + Q(x) = (x^4 - 5x^3 + 4x - 5) + (-x^4 + 3x^2 + 2x + 1)Bây giờ, cộng các hạng tử của cùng bậc:Bậc 4: x4+(−x4)=0x^4 + (-x^4) = 0Bậc 3: −5x3+0=−5x3-5x^3 + 0 = -5x^3Bậc 2:...
Đọc tiếp

a) Tìm tổng P(x)+Q(x)P(x) + Q(x)

Ta có các đa thức:

  • P(x)=x4−5x3+4x−5P(x) = x^4 - 5x^3 + 4x - 5
  • Q(x)=−x4+3x2+2x+1Q(x) = -x^4 + 3x^2 + 2x + 1

Để tìm tổng P(x)+Q(x)P(x) + Q(x), ta cộng các hệ số của các bậc tương ứng.

P(x)+Q(x)=(x4−5x3+4x−5)+(−x4+3x2+2x+1)P(x) + Q(x) = (x^4 - 5x^3 + 4x - 5) + (-x^4 + 3x^2 + 2x + 1)

Bây giờ, cộng các hạng tử của cùng bậc:

  • Bậc 4: x4+(−x4)=0x^4 + (-x^4) = 0
  • Bậc 3: −5x3+0=−5x3-5x^3 + 0 = -5x^3
  • Bậc 2: 0+3x2=3x20 + 3x^2 = 3x^2
  • Bậc 1: 4x+2x=6x4x + 2x = 6x
  • Hạng tử tự do: −5+1=−4-5 + 1 = -4

Vậy:

P(x)+Q(x)=−5x3+3x2+6x−4P(x) + Q(x) = -5x^3 + 3x^2 + 6x - 4

b) Tìm đa thức R(x)R(x) sao cho P(x)=R(x)+Q(x)P(x) = R(x) + Q(x)

Để tìm R(x)R(x), ta sử dụng công thức:

P(x)=R(x)+Q(x)P(x) = R(x) + Q(x)

Hay:

R(x)=P(x)−Q(x)R(x) = P(x) - Q(x)

Thay giá trị của P(x)P(x) và Q(x)Q(x) vào công thức:

R(x)=(x4−5x3+4x−5)−(−x4+3x2+2x+1)R(x) = (x^4 - 5x^3 + 4x - 5) - (-x^4 + 3x^2 + 2x + 1)

Khi trừ đi, ta làm thay đổi dấu các hạng tử của Q(x)Q(x):

R(x)=x4−5x3+4x−5+x4−3x2−2x−1R(x) = x^4 - 5x^3 + 4x - 5 + x^4 - 3x^2 - 2x - 1

Bây giờ, cộng các hạng tử của cùng bậc:

  • Bậc 4: x4+x4=2x4x^4 + x^4 = 2x^4
  • Bậc 3: −5x3+0=−5x3-5x^3 + 0 = -5x^3
  • Bậc 2: 0−3x2=−3x20 - 3x^2 = -3x^2
  • Bậc 1: 4x−2x=2x4x - 2x = 2x
  • Hạng tử tự do: −5−1=−6-5 - 1 = -6

Vậy:

R(x)=2x4−5x3−3x2+2x−6R(x) = 2x^4 - 5x^3 - 3x^2 + 2x - 6

Kết quả:

a) Tổng P(x)+Q(x)=−5x3+3x2+6x−4P(x) + Q(x) = -5x^3 + 3x^2 + 6x - 4

b) Đa thức R(x)=2x4−5x3−3x2+2x−6R(x) = 2x^4 - 5x^3 - 3x^2 + 2x - 6

0
18 tháng 2

\(\frac{2x-3}{x+1}\) = \(\frac47\)

(2\(x-3\))x 7 = 4 x (\(x+1\))

14\(x\) - 21 = 4\(x\) + 4

14\(x\) - 4\(x\) = 21 + 4

10\(x\) = 25

\(x=2,5\)

Vậy \(x\) = 2,5

2x=3y=4z

=>\(\dfrac{2x}{12}=\dfrac{3y}{12}=\dfrac{4z}{12}\)

=>\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)

mà x+y-5z=-5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-5z}{6+4-5\cdot3}=\dfrac{-5}{-5}=1\)

=>\(\left\{{}\begin{matrix}x=6\cdot1=6\\y=4\cdot1=4\\z=3\cdot1=3\end{matrix}\right.\)

18 tháng 2

|\(x^2-25\)| + |y - 1| = 0

Vì |\(x^2\) - 25| ≥ 0; | y -1| ≥ 0 ∀ \(x\) ; y

Nên |\(x^2-25\)| + |y - 1| = 0 khi và chỉ khi:

\(\begin{cases}x^2-25=0\\ y-1=0\end{cases}\)

\(\begin{cases}\left[\begin{array}{l}x=-5\\ x=5\end{array}\right.\\ y=1\end{cases}\)

Vậy (\(x;y\) ) = (-5; 1); (5; 1)

\(a=\left(-\dfrac{1}{5}\right)^{84}=\left(\dfrac{1}{5}\right)^{84}=\left(\dfrac{1}{25}\right)^{42}\)

\(b=\left(-\dfrac{1}{3}\right)^{126}=\left(\dfrac{1}{3}\right)^{126}=\left(\dfrac{1}{27}\right)^{42}\)

Vì 25<27

nên \(\dfrac{1}{25}>\dfrac{1}{27}\)

=>\(\left(\dfrac{1}{25}\right)^{42}>\left(\dfrac{1}{27}\right)^{42}\)

=>a>b