\(\sqrt{17}+\sqrt5+1và\sqrt{45}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 giờ trước (21:23)

nhờ mỗi cô thoi à bạn

NV
12 giờ trước (21:28)

\(\sqrt{17}+\sqrt5+1>\sqrt{16}+\sqrt4+1=7\)

\(\sqrt{45}<\sqrt{49}=7\)

Suy ra \(\sqrt{17}+\sqrt5+1>\sqrt{45}\)

21 tháng 9 2015

\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)

\(\sqrt{99}<\sqrt{100}=10\)

Suy ra: \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

21 tháng 9 2015

\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)

a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)

\(7^2=49=7+42\)

mà \(15+2\sqrt{105}< 42\)

nên \(\sqrt{7}+\sqrt{15}< 7\)

b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)

\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)

mà \(2\sqrt{22}< 15+10\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)

31 tháng 10 2015

\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)

Vậy..........

22 tháng 10 2016

a] < b] < c] >

24 tháng 2 2018

Dễ mà

ta có: \(\sqrt{17}>\sqrt{16}=4\)

Tương tự: \(\sqrt{26}>\sqrt{25}=5\)

Suy ra: \(\sqrt{17}+\sqrt{26}+1>4+5+1=10\)

Mặt khác:

\(\sqrt{99}< \sqrt{100}=10\)

Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)