Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:
$(x-y+z)^2\geq 0$
$\sqrt{y^4}\geq 0$
$|1-z^3|\geq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$
Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$
Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$
$\Leftrightarrow y=0; z=1; x=-1$
Tìm số dư trong phép chia (2023\(\left(2023^{2024}+2024^{2025}+2025^{2026}\right)^{10}\)chia cho 111


\(a)x+y+61=10\sqrt{x}+12\sqrt{y}(đk:x,y>0)\)
\(\Leftrightarrow(x-10\sqrt{x}+25)+(y-12\sqrt{y}+36)=0\)
\(\Leftrightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2=0\)
có \((\sqrt{x}-5)2\ge0\) với \(\forall\) \(x\ge0\); \((\sqrt{y}-6)^2\ge\) với \(\forall y\ge0\) với \(\forall x,y\ge0\)
\(\Rightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2\ge0\)
dấu " = " xảy ra khi \(\begin{cases}x=25\\ y=36\end{cases}\)

Đề bài thiếu rồi em, phải có x,y,z là số nguyên nữa.
Nếu \(x\ge0\Rightarrow\left|x\right|+3x=x+3x=4x\) chẵn
Nếu \(x<0\Rightarrow\left|x\right|+3x=-x+3x=2x\) chẵn
Nếu \(y\ge0\Rightarrow\left|y\right|+5y=6y\) chẵn
Nếu \(y<0\Rightarrow\left|y\right|+5y=4y\) chẵn
\(\Rightarrow\left|x\right|+\left|y\right|+3x+5y\) luôn chẵn với mọi x,y nguyên
Mà 2z cũng là số chẵn
\(\Rightarrow\left|x\right|+\left|y\right|+3x+5y+2z\) luôn chẵn
Mặt khác 2025 là số lẻ
=> ko tồn tại x,y,z nguyên thỏa mãn \(\left|x\right|+\left|y\right|+3x+5y+2z=2025\)
Cho phương trình:
\(\mid x \mid + \mid y \mid + 3 x + 5 y + 2 z = 2025\)
với \(x , y , z \in \mathbb{R}\).
Bước 1: Phân tích các trường hợp theo dấu của \(x\) và \(y\)
Ta có giá trị tuyệt đối của \(x\) và \(y\) phụ thuộc vào dấu của chúng:
- Nếu \(x \geq 0\), thì \(\mid x \mid = x\)
- Nếu \(x < 0\), thì \(\mid x \mid = - x\)
- Tương tự với \(y\).
Bước 2: Xét 4 trường hợp cho dấu của \(x , y\)
Trường hợp 1: \(x \geq 0 , y \geq 0\)
\(\mid x \mid = x , \mid y \mid = y\)
Phương trình trở thành:
\(x + y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 4 x + 6 y + 2 z = 2025\)
Trường hợp 2: \(x \geq 0 , y < 0\)
\(\mid x \mid = x , \mid y \mid = - y\)
Phương trình:
\(x - y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 4 x + 4 y + 2 z = 2025\)
Trường hợp 3: \(x < 0 , y \geq 0\)
\(\mid x \mid = - x , \mid y \mid = y\)
Phương trình:
\(- x + y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 2 x + 6 y + 2 z = 2025\)
Trường hợp 4: \(x < 0 , y < 0\)
\(\mid x \mid = - x , \mid y \mid = - y\)
Phương trình:
\(- x - y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 2 x + 4 y + 2 z = 2025\)
Bước 3: Viết lại các phương trình tương ứng:
Trường hợp | Phương trình |
---|---|
1:
\(x \geq 0 , y \geq 0\)x≥0,y≥0x≥0,y≥0 | \(4 x + 6 y + 2 z = 2025\)4x+6y+2z=20254x+6y+2z=2025 |
2:
\(x \geq 0 , y < 0\)x≥0,y<0x≥0,y<0 | \(4 x + 4 y + 2 z = 2025\)4x+4y+2z=20254x+4y+2z=2025 |
3:
\(x < 0 , y \geq 0\)x<0,y≥0x<0,y≥0 | \(2 x + 6 y + 2 z = 2025\)2x+6y+2z=20252x+6y+2z=2025 |
4:
\(x < 0 , y < 0\)x<0,y<0x<0,y<0 | \(2 x + 4 y + 2 z = 2025\)2x+4y+2z=20252x+4y+2z=2025 |
Bước 4: Giải hệ cho từng trường hợp (theo tham số)
Ví dụ với trường hợp 1:
\(4 x + 6 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 2 z = 2025 - 4 x - 6 y \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } z = \frac{2025 - 4 x - 6 y}{2}\)
với điều kiện \(x \geq 0 , y \geq 0\).
Tương tự cho các trường hợp còn lại, ta có thể biểu diễn \(z\) theo \(x , y\) và các điều kiện về dấu.
Kết luận:
- Tập nghiệm là tập tất cả các bộ \(\left(\right. x , y , z \left.\right)\) sao cho thỏa mãn một trong các phương trình trên với điều kiện về dấu tương ứng.
- Ví dụ:
\(\text{N} \overset{ˊ}{\hat{\text{e}}} \text{u}\&\text{nbsp}; x \geq 0 , y \geq 0 , z = \frac{2025 - 4 x - 6 y}{2}\)
và các trường hợp khác tương tự.


Bài 1 :
\(\left|2x-1\right|=x-1\)ĐK : \(x\ge1\)
TH1 : \(2x-1=x-1\Leftrightarrow x=0\)(ktm)
TH2 : \(2x-1=1-x\Leftrightarrow3x=2\Leftrightarrow x=-\frac{2}{3}\)(ktm)
Vậy biểu thức ko có x thỏa mãn
Bài 2 :
\(\left|3x-1\right|=2x+3\)ĐK : x >= -3/2
TH1 : \(3x-1=2x+3\Leftrightarrow x=4\)
TH2 : \(3x-1=-2x-3\Leftrightarrow5x=-2\Leftrightarrow x=-\frac{2}{5}\)

Do x+y+z và |x|+|y|+|z| luôn cùng tính chẵn lẻ với mọi nguyên x,y,z
Suy ra \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\) có cùng tính chẵn lẻ với a-b+b-c+c-a
Mà a-b+b-c+c-a=0 là số chẵn
Suy ra \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\) chẵn
Do \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|=2024^{a}+2025^{a}\)
Nên \(2024^{a}+2025^{a}\) cũng là số chẵn
Nếu a≠0, do 2024 chẵn và 2025 lẻ nên \(2024^{a}+2025^{a}\) lẻ (ko thỏa mãn)
=>a=0
Thay vào đề bài:
\(\left|0-b\right|+\left|b-c\right|+\left|c-0\right|=2\Rightarrow\left|b\right|+\left|c\right|+\left|b-c\right|=2\)
- Nếu b,c đều khác 0, do b,c nguyên nên \(\left|b\right|\ge1;\left|c\right|\ge1\Rightarrow\left|b\right|+\left|c\right|\ge2\)
\(\Rightarrow\left|b\right|+\left|c\right|+\left|b-c\right|\ge2\)
Mà \(\left|b\right|+\left|c\right|+\left|b-c\right|=2\Rightarrow\begin{cases}\left|b\right|=1\\ \left|c\right|=1\\ \left|b-c\right|=0\end{cases}\) \(\Rightarrow b=c=\pm1\)
- Nếu trong 2 số b, có 1 số bằng 0. Do vai trò b,c như nhau, giả sử b=0
Thay vào: \(\left|0\right|+\left|c\right|+\left|0-c\right|=2\Rightarrow2\left|c\right|=2\Rightarrow\left|c\right|=1\)
\(\Rightarrow c=\pm1\)
Vậy các sộ số nguyên a,b,c thỏa mãn yêu cầu là:
\(\left(a,b,c\right)=\left(0,0,1\right);\left(0,1,0\right),\left(0,0,-1\right),\left(0,-1,0\right);\left(0,1,1\right),\left(0,-1,-1\right)\)
Cho bài toán:
Tìm các số nguyên \(a , b , c\) sao cho:
\(\mid a - b \mid + \mid b - c \mid + \mid c - a \mid = 2024^{a} + 2025^{a}\)
Phân tích:
- Vế trái là tổng ba giá trị tuyệt đối, luôn không âm.
- Vế phải là tổng hai số mũ với cơ số lớn \(2024\) và \(2025\), lũy thừa \(a\).
- \(a , b , c \in \mathbb{Z}\) (số nguyên).
Bước 1: Bất đẳng thức về tổng các giá trị tuyệt đối
Ta có:
\(\mid a - b \mid + \mid b - c \mid \geq \mid a - c \mid\)
Do đó:
\(\mid a - b \mid + \mid b - c \mid + \mid c - a \mid \geq \mid a - c \mid + \mid c - a \mid = 2 \mid a - c \mid\)
Nhưng bên trái thực ra bằng:
\(\mid a - b \mid + \mid b - c \mid + \mid c - a \mid = 2 \times (\text{kho}ả\text{ng}\&\text{nbsp};\text{c} \overset{ˊ}{\text{a}} \text{ch}\&\text{nbsp};\text{l}ớ\text{n}\&\text{nbsp};\text{nh} \overset{ˊ}{\hat{\text{a}}} \text{t}\&\text{nbsp};\text{gi}ữ\text{a}\&\text{nbsp};\text{c} \overset{ˊ}{\text{a}} \text{c}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp}; a , b , c )\)
Cụ thể, vì tổng ba giá trị tuyệt đối của 3 điểm trên trục số là gấp đôi độ dài đoạn thẳng lớn nhất giữa chúng.
Bước 2: Xét vế phải
- Nếu \(a < 0\), thì \(2024^{a}\) và \(2025^{a}\) là các số phân số rất nhỏ (dương) do số mũ âm.
- Nếu \(a = 0\), thì:
\(2024^{0} + 2025^{0} = 1 + 1 = 2\)
- Nếu \(a > 0\), thì \(2024^{a} + 2025^{a}\) là số rất lớn, nhanh tăng.
Bước 3: So sánh quy mô hai vế
- Vế trái là số nguyên không âm, ít nhất là 0.
- Vế phải là số dương (do lũy thừa dương), rất lớn nếu \(a > 0\).
Bước 4: Xét từng trường hợp
- Trường hợp \(a < 0\):
Vế phải là số nhỏ hơn 2 (do \(2024^{a} , 2025^{a} < 1\)), còn vế trái là số nguyên không âm (phải là số nguyên, vì \(a , b , c\) nguyên), nên vế trái ít nhất bằng 0. Rất khó bằng một số phân số nhỏ.
- Trường hợp \(a = 0\):
Vế phải là \(2\).
Vậy:
\(\mid a - b \mid + \mid b - c \mid + \mid c - a \mid = 2\)
Vì \(a = 0\), thì \(a = 0\).
Ta cần tìm \(b , c\) nguyên sao cho:
\(\mid 0 - b \mid + \mid b - c \mid + \mid c - 0 \mid = 2\)
Cách này ta dễ kiểm tra.
- Gọi \(b = m\), \(c = n\).
Ta có:
\(\mid m \mid + \mid m - n \mid + \mid n \mid = 2\)
Bước 5: Tìm \(m , n\) nguyên thỏa mãn
Ta cần tổng ba giá trị tuyệt đối bằng 2.
- Các giá trị tuyệt đối là không âm, nên tổng ba số này bằng 2 nghĩa là tổng này khá nhỏ.
Thử các trường hợp:
- Nếu \(m = 0\), thì
\(0 + \mid 0 - n \mid + \mid n \mid = \mid n \mid + \mid n \mid = 2 \mid n \mid = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \mid n \mid = 1\)
- Nếu \(m = 0 , n = \pm 1\) thì tổng đúng bằng 2.
- Nếu \(n = 0\), thì
\(\mid m \mid + \mid m - 0 \mid + 0 = \mid m \mid + \mid m \mid = 2 \mid m \mid = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \mid m \mid = 1\)
- Nếu \(m = \pm 1 , n = 0\), cũng thỏa.
- Nếu \(m = n\), thì
\(\mid m \mid + 0 + \mid m \mid = 2 \mid m \mid = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \mid m \mid = 1\)
Thí dụ: \(m = n = \pm 1\)
Bước 6: Tổng hợp nghiệm
Với \(a = 0\), \(b , c\) thỏa mãn:
\(\mid b \mid + \mid b - c \mid + \mid c \mid = 2\)
Các bộ nghiệm là:
- \(\left(\right. b , c \left.\right) = \left(\right. 0 , \pm 1 \left.\right) , \left(\right. \pm 1 , 0 \left.\right) , \left(\right. \pm 1 , \pm 1 \left.\right)\)
Bước 7: Trường hợp \(a > 0\)
Vế phải rất lớn, vế trái nhỏ nhất là 0 (khi \(a = b = c\)), nhưng không thể bằng một số rất lớn. Do đó, không thỏa.
Kết luận:
- Các số nguyên \(a , b , c\) thỏa mãn phương trình là:
\(a = 0\)
và
\(\mid b \mid + \mid b - c \mid + \mid c \mid = 2\)
Cụ thể các bộ \(\left(\right. b , c \left.\right)\) như trên.