tìm tất cả các số thực x thỏa mãn |x+2023| ||+ | 3x + 2024| + | 29x + 2025| = 3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8

Bạn ơi, câu hỏi lỗi rồi nha

AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:

$(x-y+z)^2\geq 0$

$\sqrt{y^4}\geq 0$

$|1-z^3|\geq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$

Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$

Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$

$\Leftrightarrow y=0; z=1; x=-1$

 

DH
Đỗ Hoàn
CTVHS VIP
16 tháng 8

\(a)x+y+61=10\sqrt{x}+12\sqrt{y}(đk:x,y>0)\)

\(\Leftrightarrow(x-10\sqrt{x}+25)+(y-12\sqrt{y}+36)=0\)

\(\Leftrightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2=0\)

\((\sqrt{x}-5)2\ge0\) với \(\forall\) \(x\ge0\); \((\sqrt{y}-6)^2\ge\) với \(\forall y\ge0\) với \(\forall x,y\ge0\)

\(\Rightarrow(\sqrt{x}-5)2+(\sqrt{y}-6)2\ge0\)

dấu " = " xảy ra khi \(\begin{cases}x=25\\ y=36\end{cases}\)

NV
2 tháng 9

Đề bài thiếu rồi em, phải có x,y,z là số nguyên nữa.

Nếu \(x\ge0\Rightarrow\left|x\right|+3x=x+3x=4x\) chẵn

Nếu \(x<0\Rightarrow\left|x\right|+3x=-x+3x=2x\) chẵn

Nếu \(y\ge0\Rightarrow\left|y\right|+5y=6y\) chẵn

Nếu \(y<0\Rightarrow\left|y\right|+5y=4y\) chẵn

\(\Rightarrow\left|x\right|+\left|y\right|+3x+5y\) luôn chẵn với mọi x,y nguyên

Mà 2z cũng là số chẵn

\(\Rightarrow\left|x\right|+\left|y\right|+3x+5y+2z\) luôn chẵn

Mặt khác 2025 là số lẻ

=> ko tồn tại x,y,z nguyên thỏa mãn \(\left|x\right|+\left|y\right|+3x+5y+2z=2025\)

10 giờ trước (18:42)

Cho phương trình:

\(\mid x \mid + \mid y \mid + 3 x + 5 y + 2 z = 2025\)

với \(x , y , z \in \mathbb{R}\).


Bước 1: Phân tích các trường hợp theo dấu của \(x\) và \(y\)

Ta có giá trị tuyệt đối của \(x\) và \(y\) phụ thuộc vào dấu của chúng:

  • Nếu \(x \geq 0\), thì \(\mid x \mid = x\)
  • Nếu \(x < 0\), thì \(\mid x \mid = - x\)
  • Tương tự với \(y\).

Bước 2: Xét 4 trường hợp cho dấu của \(x , y\)


Trường hợp 1: \(x \geq 0 , y \geq 0\)

\(\mid x \mid = x , \mid y \mid = y\)

Phương trình trở thành:

\(x + y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 4 x + 6 y + 2 z = 2025\)


Trường hợp 2: \(x \geq 0 , y < 0\)

\(\mid x \mid = x , \mid y \mid = - y\)

Phương trình:

\(x - y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 4 x + 4 y + 2 z = 2025\)


Trường hợp 3: \(x < 0 , y \geq 0\)

\(\mid x \mid = - x , \mid y \mid = y\)

Phương trình:

\(- x + y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 2 x + 6 y + 2 z = 2025\)


Trường hợp 4: \(x < 0 , y < 0\)

\(\mid x \mid = - x , \mid y \mid = - y\)

Phương trình:

\(- x - y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 2 x + 4 y + 2 z = 2025\)


Bước 3: Viết lại các phương trình tương ứng:

Trường hợp

Phương trình

1:

 

\(x \geq 0 , y \geq 0\)x≥0,y≥0x≥0,y≥0

\(4 x + 6 y + 2 z = 2025\)4x+6y+2z=20254x+6y+2z=2025

2:

 

\(x \geq 0 , y < 0\)x≥0,y<0x≥0,y<0

\(4 x + 4 y + 2 z = 2025\)4x+4y+2z=20254x+4y+2z=2025

3:

 

\(x < 0 , y \geq 0\)x<0,y≥0x<0,y≥0

\(2 x + 6 y + 2 z = 2025\)2x+6y+2z=20252x+6y+2z=2025

4:

 

\(x < 0 , y < 0\)x<0,y<0x<0,y<0

\(2 x + 4 y + 2 z = 2025\)2x+4y+2z=20252x+4y+2z=2025


Bước 4: Giải hệ cho từng trường hợp (theo tham số)

Ví dụ với trường hợp 1:

\(4 x + 6 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 2 z = 2025 - 4 x - 6 y \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } z = \frac{2025 - 4 x - 6 y}{2}\)

với điều kiện \(x \geq 0 , y \geq 0\).


Tương tự cho các trường hợp còn lại, ta có thể biểu diễn \(z\) theo \(x , y\) và các điều kiện về dấu.


Kết luận:

  • Tập nghiệm là tập tất cả các bộ \(\left(\right. x , y , z \left.\right)\) sao cho thỏa mãn một trong các phương trình trên với điều kiện về dấu tương ứng.
  • Ví dụ:

\(\text{N} \overset{ˊ}{\hat{\text{e}}} \text{u}\&\text{nbsp}; x \geq 0 , y \geq 0 , z = \frac{2025 - 4 x - 6 y}{2}\)

và các trường hợp khác tương tự.

18 tháng 8 2021

Bài 1 : 

\(\left|2x-1\right|=x-1\)ĐK : \(x\ge1\)

TH1 : \(2x-1=x-1\Leftrightarrow x=0\)(ktm)

TH2 : \(2x-1=1-x\Leftrightarrow3x=2\Leftrightarrow x=-\frac{2}{3}\)(ktm)

Vậy biểu thức ko có x thỏa mãn 

Bài 2 : 

\(\left|3x-1\right|=2x+3\)ĐK : x >= -3/2 

TH1 : \(3x-1=2x+3\Leftrightarrow x=4\)

TH2 : \(3x-1=-2x-3\Leftrightarrow5x=-2\Leftrightarrow x=-\frac{2}{5}\)

NV
2 tháng 9

Do x+y+z và |x|+|y|+|z| luôn cùng tính chẵn lẻ với mọi nguyên x,y,z

Suy ra \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\) có cùng tính chẵn lẻ với a-b+b-c+c-a

Mà a-b+b-c+c-a=0 là số chẵn

Suy ra \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\) chẵn

Do \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|=2024^{a}+2025^{a}\)

Nên \(2024^{a}+2025^{a}\) cũng là số chẵn

Nếu a≠0, do 2024 chẵn và 2025 lẻ nên \(2024^{a}+2025^{a}\) lẻ (ko thỏa mãn)

=>a=0

Thay vào đề bài:

\(\left|0-b\right|+\left|b-c\right|+\left|c-0\right|=2\Rightarrow\left|b\right|+\left|c\right|+\left|b-c\right|=2\)

- Nếu b,c đều khác 0, do b,c nguyên nên \(\left|b\right|\ge1;\left|c\right|\ge1\Rightarrow\left|b\right|+\left|c\right|\ge2\)

\(\Rightarrow\left|b\right|+\left|c\right|+\left|b-c\right|\ge2\)

\(\left|b\right|+\left|c\right|+\left|b-c\right|=2\Rightarrow\begin{cases}\left|b\right|=1\\ \left|c\right|=1\\ \left|b-c\right|=0\end{cases}\) \(\Rightarrow b=c=\pm1\)

- Nếu trong 2 số b, có 1 số bằng 0. Do vai trò b,c như nhau, giả sử b=0

Thay vào: \(\left|0\right|+\left|c\right|+\left|0-c\right|=2\Rightarrow2\left|c\right|=2\Rightarrow\left|c\right|=1\)

\(\Rightarrow c=\pm1\)

Vậy các sộ số nguyên a,b,c thỏa mãn yêu cầu là:

\(\left(a,b,c\right)=\left(0,0,1\right);\left(0,1,0\right),\left(0,0,-1\right),\left(0,-1,0\right);\left(0,1,1\right),\left(0,-1,-1\right)\)

15 giờ trước (12:53)

Cho bài toán:

Tìm các số nguyên \(a , b , c\) sao cho:

\(\mid a - b \mid + \mid b - c \mid + \mid c - a \mid = 2024^{a} + 2025^{a}\)


Phân tích:

  • Vế trái là tổng ba giá trị tuyệt đối, luôn không âm.
  • Vế phải là tổng hai số mũ với cơ số lớn \(2024\) và \(2025\), lũy thừa \(a\).
  • \(a , b , c \in \mathbb{Z}\) (số nguyên).

Bước 1: Bất đẳng thức về tổng các giá trị tuyệt đối

Ta có:

\(\mid a - b \mid + \mid b - c \mid \geq \mid a - c \mid\)

Do đó:

\(\mid a - b \mid + \mid b - c \mid + \mid c - a \mid \geq \mid a - c \mid + \mid c - a \mid = 2 \mid a - c \mid\)

Nhưng bên trái thực ra bằng:

\(\mid a - b \mid + \mid b - c \mid + \mid c - a \mid = 2 \times (\text{kho}ả\text{ng}\&\text{nbsp};\text{c} \overset{ˊ}{\text{a}} \text{ch}\&\text{nbsp};\text{l}ớ\text{n}\&\text{nbsp};\text{nh} \overset{ˊ}{\hat{\text{a}}} \text{t}\&\text{nbsp};\text{gi}ữ\text{a}\&\text{nbsp};\text{c} \overset{ˊ}{\text{a}} \text{c}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp}; a , b , c )\)

Cụ thể, vì tổng ba giá trị tuyệt đối của 3 điểm trên trục số là gấp đôi độ dài đoạn thẳng lớn nhất giữa chúng.


Bước 2: Xét vế phải

  • Nếu \(a < 0\), thì \(2024^{a}\) và \(2025^{a}\) là các số phân số rất nhỏ (dương) do số mũ âm.
  • Nếu \(a = 0\), thì:

\(2024^{0} + 2025^{0} = 1 + 1 = 2\)

  • Nếu \(a > 0\), thì \(2024^{a} + 2025^{a}\) là số rất lớn, nhanh tăng.

Bước 3: So sánh quy mô hai vế

  • Vế trái là số nguyên không âm, ít nhất là 0.
  • Vế phải là số dương (do lũy thừa dương), rất lớn nếu \(a > 0\).

Bước 4: Xét từng trường hợp

  • Trường hợp \(a < 0\):

Vế phải là số nhỏ hơn 2 (do \(2024^{a} , 2025^{a} < 1\)), còn vế trái là số nguyên không âm (phải là số nguyên, vì \(a , b , c\) nguyên), nên vế trái ít nhất bằng 0. Rất khó bằng một số phân số nhỏ.

  • Trường hợp \(a = 0\):

Vế phải là \(2\).

Vậy:

\(\mid a - b \mid + \mid b - c \mid + \mid c - a \mid = 2\)

Vì \(a = 0\), thì \(a = 0\).

Ta cần tìm \(b , c\) nguyên sao cho:

\(\mid 0 - b \mid + \mid b - c \mid + \mid c - 0 \mid = 2\)

Cách này ta dễ kiểm tra.

  • Gọi \(b = m\)\(c = n\).

Ta có:

\(\mid m \mid + \mid m - n \mid + \mid n \mid = 2\)


Bước 5: Tìm \(m , n\) nguyên thỏa mãn

Ta cần tổng ba giá trị tuyệt đối bằng 2.

  • Các giá trị tuyệt đối là không âm, nên tổng ba số này bằng 2 nghĩa là tổng này khá nhỏ.

Thử các trường hợp:

  • Nếu \(m = 0\), thì

\(0 + \mid 0 - n \mid + \mid n \mid = \mid n \mid + \mid n \mid = 2 \mid n \mid = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \mid n \mid = 1\)

  • Nếu \(m = 0 , n = \pm 1\) thì tổng đúng bằng 2.
  • Nếu \(n = 0\), thì

\(\mid m \mid + \mid m - 0 \mid + 0 = \mid m \mid + \mid m \mid = 2 \mid m \mid = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \mid m \mid = 1\)

  • Nếu \(m = \pm 1 , n = 0\), cũng thỏa.
  • Nếu \(m = n\), thì

\(\mid m \mid + 0 + \mid m \mid = 2 \mid m \mid = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \mid m \mid = 1\)

Thí dụ: \(m = n = \pm 1\)


Bước 6: Tổng hợp nghiệm

Với \(a = 0\)\(b , c\) thỏa mãn:

\(\mid b \mid + \mid b - c \mid + \mid c \mid = 2\)

Các bộ nghiệm là:

  • \(\left(\right. b , c \left.\right) = \left(\right. 0 , \pm 1 \left.\right) , \left(\right. \pm 1 , 0 \left.\right) , \left(\right. \pm 1 , \pm 1 \left.\right)\)

Bước 7: Trường hợp \(a > 0\)

Vế phải rất lớn, vế trái nhỏ nhất là 0 (khi \(a = b = c\)), nhưng không thể bằng một số rất lớn. Do đó, không thỏa.


Kết luận:

  • Các số nguyên \(a , b , c\) thỏa mãn phương trình là:

\(a = 0\)

\(\mid b \mid + \mid b - c \mid + \mid c \mid = 2\)

Cụ thể các bộ \(\left(\right. b , c \left.\right)\) như trên.