
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài giải
Câu F mình làm ở câu trước của bạn rồi nên giờ mình trả lời tiếp luôn nha ! Bài tìm GTLN tí nữa mifh làm cho ! Đang bận !
Câu 1 : Tìm GTNN
\(H=\left|2x+5\right|+\left|8-2x\right|\)
Áp dụng tính chất \(\left|A\right|\ge A\)Ta có :
\(\left|2x+5\right|\ge2x+5\text{ Dấu " = " xảy ra khi }2x+5\ge0\text{ }\Rightarrow\text{ }2x\ge-5\text{ }\Rightarrow\text{ }x\ge-\frac{5}{2}\)
\(\left|8-2x\right|\ge8-2x\text{ Dấu " = " xảy ra khi }8-2x\ge0\text{ }\Rightarrow\text{ }2x\le8\text{ }\Rightarrow\text{ }x\le4\)
\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge2x+5+8-2x\)
\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge13\text{ Dấu " = " xảy ra khi }-\frac{5}{2}\le x\le4\)
\(\text{Vậy }Min\text{ }H=13\text{ khi }-\frac{5}{2}\le x\le4\)

Câu 8:
Giải:
Ta có: \(a:b=3:4\Rightarrow\frac{a}{3}=\frac{b}{4}\Rightarrow\frac{a^2}{9}=\frac{b^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}\)
+) \(\frac{a^2}{9}=\frac{36}{25}\Rightarrow a^2=\frac{324}{25}\Rightarrow a=\pm\frac{18}{5}\)
+) \(\frac{b^2}{16}=\frac{36}{25}\Rightarrow b^2=\frac{576}{25}\Rightarrow b=\pm\frac{24}{5}\)
Vậy bộ số \(\left(x;y\right)\) là \(\left(\frac{18}{5};\frac{24}{5}\right);\left(\frac{-18}{5};\frac{-24}{5}\right)\)

\(a)\) Ta có :
\(\left|\frac{1}{2}-x\right|\ge0\) ( với mọi x )
\(\Rightarrow\)\(A=0,6+\left|\frac{1}{2}-x\right|\ge0,6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{1}{2}-x=0\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(A\) là \(0,6\) khi \(x=\frac{1}{2}\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(\left|2x+\frac{2}{3}\right|\ge0\) ( với mọi x )
\(\Rightarrow\)\(-\left|2x+\frac{2}{3}\right|\le0\) ( với mọi x )
\(\Rightarrow\)\(B=\frac{2}{3}-\left|2x+\frac{2}{3}\right|\le\frac{2}{3}\) ( cộng hai vế cho \(\frac{2}{3}\) )
Dấu "=" xảy ra \(\Leftrightarrow\)\(2x+\frac{2}{3}=0\)
\(\Leftrightarrow\)\(2x=\frac{-2}{3}\)
\(\Leftrightarrow\)\(x=\frac{-2}{3}:2\)
\(\Leftrightarrow\)\(x=\frac{-2}{3}.\frac{1}{2}\)
\(\Leftrightarrow\)\(x=\frac{-1}{3}\)
Vậy GTLN của \(B\) là \(\frac{2}{3}\) khi \(x=\frac{-1}{3}\)
Chúc bạn học tốt ~

Ta có :
\(-\left(2x-6\right)^4\le0\forall x\)
\(\Rightarrow-\left(2x-6\right)^4+9\le9\forall x\)
Dấu \("="\)<=> \(-\left(2x-6\right)^4=0\Leftrightarrow\left(2x-6\right)^4=0\Leftrightarrow2x-6=0\Leftrightarrow2x=6\Leftrightarrow x=3\)
Vậy GTLN của \(A\)là 9 \(\Leftrightarrow x=3\)
Bài 2 :
Điều kiện : n khác -2 ; n thuộc Z
Để G nhỏ nhất
<=> 3 + 10/n + 2 nhỏ nhất
<=> 10/n+2 nhỏ nhất
<=> n + 2 < 0 ; n + 2 thuộc Ư ( 10 ) ; n + 2 lớn nhất
<=> n + 2 = -1
<=> n = -1 - 2
<=> n = -3
Vậy G đạt GTNN <=> n = -3

\(A=\left(2x+\frac{1}{3}\right)^4-1=\left[\left(2x+\frac{1}{3}\right)^2\right]^2-1\)
Vì \(\left[\left(2x+\frac{1}{3}\right)^2\right]^2\ge0\) nên \(\left[\left(2x+\frac{1}{3}\right)^2\right]^2-1\ge-1\) hay \(A\ge-1\)
Nên GTNN của A là -1 đạt được khi \(2x+\frac{1}{3}=0\Leftrightarrow2x=-\frac{1}{3}\Leftrightarrow x=-\frac{1}{6}\)

a) muốn A đạt giá trị lớn nhất thì /x-5/ đạt giá trị nhỏ nhât
mà /x-5/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị lớn nhất của A là 1000 khi x=5
b) muốn B đạt giá trị nhỏ nhất t hì /y-3/ đạt già trị nhỏ nhất
mà /y-3/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của B bằng 50 khi y=3
c) muốn C đạt giá trị nhỏ nhất thì /x-100/ và /y+200/ đạt giá trị nhỏ nhất
mà /x-100/ đạt giá trị nhỏ nhất bằng 0
/y+200/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của C bằng -1 khi x=100 và y=-200
a) muốn A đạt giá trị lớn nhất thì /x-5/ đạt giá trị nhỏ nhât
mà /x-5/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị lớn nhất của A là 1000 khi x=5
b) muốn B đạt giá trị nhỏ nhất t hì /y-3/ đạt già trị nhỏ nhất
mà /y-3/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của B bằng 50 khi y=3
c) muốn C đạt giá trị nhỏ nhất thì /x-100/ và /y+200/ đạt giá trị nhỏ nhất
mà /x-100/ đạt giá trị nhỏ nhất bằng 0
/y+200/ đạt giá trị nhỏ nhất bằng 0
suy ra giá trị nhỏ nhất của C bằng -1 khi x=100 và y=-200

Ta có : A = | x - 3 | + 10 > 0
Vì | x - 3 |\(\ge\)0
Dấu = Xảy ra <=> x = 3
Vậy gtnn của A = 10 <=> x = 3
Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)
\(\Rightarrow A=\left|x-3\right|+10\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Amin =10 khi và chỉ khi x = 3
Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Bmin = -7 khi và chỉ khi x = 1
Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Cmax = -3 khi và chỉ khi x = 2
Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Dmax = 15 khi và chỉ khi x = 2
Ta có: \(C=2\left|2x-3\right|+3\left|4x+1\right|\)
\(=3\left|4x+1\right|+2\left|2x-3\right|\)
TH1: \(x<-\frac14\)
=>4x+1<0; 2x-3<0
=>\(C=3\left(-4x-1\right)+2\left(3-2x\right)\)
=-12x-3+6-4x
=-16x+3
Vì C=-16x+3 là hàm số nghịch biến trên R
nên C nhỏ nhất khi x lớn nhất
Khi \(x<-\frac14\) thì x không có giá trị lớn nhất
=>C không có giá trị nhỏ nhất
TH2: \(-\frac14\le x<\frac32\)
=>4x+1>=0; 2x-3<0
=>C=3(4x+1)+2(3-2x)
=12x+3+6-4x
=8x+9
Vì hàm số C=8x+9 là hàm số đồng biến trên R
nên C nhỏ nhất khi x nhỏ nhất
Khi \(-\frac14\le x<\frac32\) thì GTNN của x là \(x=-\frac14\)
=>\(C=8\cdot\frac{-1}{4}+9=-2+9=7\) (1)
TH3: \(x\ge\frac32\)
=>4x-1>0; 2x-3>=0
=>C=3(4x+1)+2(2x-3)
=12x+3+4x-6
=16x-3
Vì hàm số C=16x-3 là hàm số đồng biến trên R
nên C nhỏ nhất khi x nhỏ nhất
Khi \(x\ge\frac32\) thì \(x_{\min}=\frac32\)
=>\(C_{\min}=16\cdot\frac32-3=24-3=21\) (2)
Từ (1),(2) suy ra \(C_{\min}=7\) khi x=-1/4
tui còn ko đc gp nào nè