Cho phương trình bậc nhất hai ẩn mx + y = –2.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 giờ trước (9:59)

@miss giúp mình bài này

18 giờ trước (10:02)

Phương trình:

mx+y=−2mx + y = -2

Thay x=1x = 1, y=−2y = -2 vào:

m(1)+(−2)=−2⇒m−2=−2m(1) + (-2) = -2 \Rightarrow m - 2 = -2

Giải phương trình:

m=0m = 0

✅ Vậy: m = 0

b) Viết công thức nghiệm tổng quát với m=0m = 0:

Thay m vào phương trình ban đầu:

0x+y=−2⇒y=−20x + y = -2 \Rightarrow y = -2

Vì không có x trong phương trình, nên x có thể nhận mọi giá trị.

Ta viết nghiệm tổng quát dưới dạng:

(x;y)=(t;−2),t∈R(x; y) = (t; -2), \quad t \in \mathbb{R}

Vậy: Tập nghiệm là tất cả các điểm có hoành độ tùy ý và tung độ bằng –2

1 tháng 6 2021

Đáp án: D

Phương trình vô nghiệm khi: \(\Delta'< 0\)

Ta có: \(\Delta'=\left(1-m\right)^2+4m=\left(m+1\right)^2\ge0\forall m\)

Nên phương trình luôn có nghiệm với mọi m

1 tháng 6 2021

CHẮC LÀ B ĐÓ

30 tháng 11 2015

Không ai làm

vì đề bài quá dài.

Bạn nên chí nhỏ ra nhé

sẽ có nhiều người giúp...

17 tháng 8 2016

a) Nếu m = -1 thì : \(4x-3=0\Leftrightarrow x=\frac{3}{4}\) => pt có một nghiệm

Nếu \(m\ne-1\) , xét \(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)=m^2-2m+1-\left(m^2-m-2\right)=-m+3\)

Để pt có hai nghiệm phân biệt thì \(\Delta>0\) , tức là \(3-m>0\Leftrightarrow m< 3\)

Vậy để pt có hai nghiệm phân biệt thì \(\begin{cases}m< 3\\m\ne-1\end{cases}\)

b) Thay x = 2 vào pt đã cho  , tìm được m = -6

Suy ra pt : \(-5x^2+14x-8=0\Leftrightarrow\left(5x-4\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{4}{5}\end{array}\right.\)

Vậy nghiệm còn lại là x = 4/5

17 tháng 8 2016

c) Áp dụng hệ thức Vi-et , ta có : \(\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m-2\end{cases}\)

\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{7}{4}\Leftrightarrow4\left(x_1+x_2\right)=7x_1.x_2\)

\(\Rightarrow4.\left(2m-2\right)=7.\left(m-2\right)\Leftrightarrow8m-8=7m-14\Leftrightarrow m=-6\)

d) Ta có : \(A=2\left(x_1^2+x_2^2\right)+x_1.x_2=2\left(x_1+x_2\right)^2-3x_1.x_2=8\left(m-1\right)^2-3\left(m-2\right)\)

\(=8m^2-19m+14=8\left(m-\frac{19}{16}\right)^2+\frac{87}{32}\ge\frac{87}{32}\)

=> Min A = 87/32 <=> m = 19/16

 

2 tháng 6 2017

a /

xét ten ta ;(1-2m)^2 - 4(m-3) >0

     <=>1-4m+4m^2-4m+12

     <=>4m^2 +13 luông đúng với mọi m tham số  => phương trình có 2 nhiệm phân biệt x1 x2

25 tháng 4 2018

cho phương trình x2 - 2mx + m2 - m + 3 = 0 (1), tìm m để phương trình để biểu thức A=x12+x22 có giá trị nhỏ nhất