Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tam giác AKB và tam giác AKC có :
AB=AC ( gt )
AK : cạnh chung
BK=KC ( gt )
do đó tam giác AKB = tam giác AKC ( c.c.c )
b) Xét tam giác ABC có : AB=AC
suy ra tam giác ABC cân tại A
suy ra AK là đường trung trực và là đường cao
nên AK vuông góc với BC
c) Có AK vuông góc với BC , CE vuông góc với BC
suy ra EC//AK

A B C M N I E F
Bài làm
a) Xét tam giác AMN có:
AM = AN
=> Tam giác AMN cân tại A.
b) Xét tam giác ABC cân tại A có:
\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\) (1)
Xét tam giác AMN cân tại A có:
\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => \(\widehat{B}=\widehat{M}\)
Mà hai góc này ở vị trí đồng vị.
=> MN // BC
c) Xét tam giác ABN và tam giác ACM có:
AN = AM ( gt )
\(\widehat{A}\) chung
AB = AC ( Vì tam giác ABC cân )
=> Tam giác ABN = tam giác ACM ( c.g.c )
=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )
Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)
\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)
Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )
\(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )
=> \(\widehat{IBC}=\widehat{ICB}\)
=> Tam giác BIC cân tại I
Vì MN // BC
=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )
\(\widehat{NMI}=\widehat{ICB}\)( so le trong )
Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )
=> \(\widehat{MNI}=\widehat{NMI}\)
=> Tam giác MIN cân tại I
d) Xét tam giác cân AMN có:
E là trung điểm của MN
=> AE là trung tuyến
=> AE là đường trung trực.
=> \(\widehat{AEN}=90^0\) (1)
Xét tam giác cân MNI có:
E là trung điểm MN
=> IE là đường trung tuyến
=> IE là trung trực.
=> \(\widehat{IEN}=90^0\) (2)
Cộng (1) và (2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng. (3)
Xét tam giác cân BIC có:
F là trung điểm BC
=> IF là trung tuyến
=> IF là trung trực.
=> \(\widehat{IFC}=90^0\)
Và MN // BC
Mà \(\widehat{IFC}=90^0\)
=> \(\widehat{IEN}=90^0\)
=> E,I,F thẳng hàng. (4)
Từ (3) và (4) => A,E,I,F thẳng hàng. ( đpcm )
# Học tốt #

\(\text{b) Ta có: MD vuông góc với BE}\)
\(\text{ BE vuông góc với EN}\)
Xét tam giác MDI và tam giác IEN ta có:
MD=EN(vì tam giác MBD = tam giác CEN)
góc MDI = góc IEN(=90 độ)
góc DMI = góc INE(cmt)
=>tam giác MDI = tam giác IEN(CGV-GN)
=>IM=IN(ctư)
=>đường thẳng BC cắt MN tại trung điểm I của MN

Rất Sorry bạn nha.Mik mới nghĩ ra câu a,b thôi,còn câu c thì mik cần thời gian:(
Bạn tự chứng minh bổ đề đường trung bình nha.
a.
Do N là trung điểm của DE;I là trung điểm của BE nên NI là đường trung bình của tam giác BDE nên:
\(IN=\frac{1}{2}BD\left(1\right)\)
Mặt khác:M là trung điểm của BC,I là trung điểm của BE nên MI là đường trung bình của tam giác BEC nên:
\(IM=\frac{1}{2}EC\left(2\right)\)
Mà \(BD=EC\) nên từ (1);(2) suy ra \(IN=MI\Rightarrow\Delta IMN\) cân tại I.
b.
Do IN là đường trung bình nên \(IN//AB\Rightarrow\widehat{APQ}=\widehat{INM}\left(3\right)\)
Do IM là đường trung bình nên \(IM//EC\Rightarrow\widehat{AQP}=\widehat{IMN}\left(4\right)\)
Từ (3);(4) suy ra \(\widehat{APQ}=\widehat{AQP}\Rightarrow\Delta APQ\) cân tại A.

KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA
A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)
\(CI\perp AD\Rightarrow\widehat{CID}=90^o\)
\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
=> BH // CI (ĐPCM)
B)
XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)
XÉT \(\Delta AHB\)VUÔNG TẠI H
\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)
từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)
XÉT \(\Delta ABH\)VÀ\(\Delta CAI\)CÓ
\(\widehat{H}=\widehat{I}=90^o\)
AB = AC (gt)
\(\widehat{ABH}=\widehat{IAC}\)(CMT)
=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)
=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )
🌸 Đề bài:
Cho ∆ABC cân tại A. M ∈ AB, N ∈ AC sao cho MB = NC. Đường thẳng BN cắt CM tại I. Gọi E là trung điểm của BC.
Chứng minh:
a) BN = CM và MN // BC
b) AI là trung trực của MN
c) A, I, E thẳng hàng
🩵 Lời giải:
🧁 a) Chứng minh BN = CM và MN // BC
⟹ AB - MB = AC - NC ⟹ AM = AN
→ Tam giác AMN cân tại A
AB = AC (do ∆ cân)
MB = NC (GT)
∠BAM = ∠CAN (góc chung)
⟹ △ABM ≅ △ACN (c-g-c)
⟹ BN = CM ✅
MB = NC (GT), BN = CM (vừa cm)
⟹ BMNC là hình bình hành
⟹ MN // BC ✅
🧸 b) Chứng minh AI là trung trực của MN
⟹ AI ⊥ MN và AI cắt MN tại trung điểm ✅
🐣 c) Chứng minh A, I, E thẳng hàng
⟹ AI ⊥ BC
⟹ AE ⊥ BC
⟹ AE và AI đều ⊥ BC ⇒ A, I, E thẳng hàng ✅
🎀 Kết luận:
✅ BN = CM, MN // BC
✅ AI là trung trực của MN
✅ A, I, E thẳng hàng
Chúc em học tốt nhaaaaa 🧋🧸✨
a: Xét ΔMBC và ΔNCB có
MB=NC
\(\hat{MBC}=\hat{NCB}\)
BC chung
Do đó: ΔMBC=ΔNCB
=>MC=NB
Ta có: AM+MB=AB
AN+NC=AC
mà MB=NC và AB=AC
nên AM=AN
Xét ΔABC có \(\frac{AM}{AB}=\frac{AN}{AC}\)
nên MN//BC
b: Ta có: ΔMBC=ΔNCB
=>\(\hat{MCB}=\hat{NBC}\)
=>\(\hat{IBC}=\hat{ICB}\)
=>IB=IC
Ta có: IB+IN=BN
IC+IM=CM
mà BN=CM và IB=IC
nên IN=IM
=>I nằm trên đường trung trực của MN(1)
Ta có: AM=AN
=>A nằm trên đường trung trực của MN(2)
Từ (1),(2) suy ra AI là đường trung trực của MN
c: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(3)
ta có: IB=IC
=>I nằm trên đường trung trực của BC(4)
ta có: EB=EC
=>E nằm trên đường trung trực của BC(5)
Từ (3),(4),(5) suy ra A,I,E thẳng hàng