K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7

Giải:

Vì a : 3 dư 1 nên a = 3k + 1

Vì b : 3 dư 2 nên b = 3k + 2

a.b = (3k + 1).(3k + 2)

ab = 3k.(3k + 2) + 3k + 2

ab = 9k\(^2\) + 6k + 3k + 2

ab = 3.(3k\(^2+2k+1)\) + 2

Vì 3 ⋮ 3 nên 3.(3k\(^2\) + 2k+ 1) ⋮ 3

2 : 3 dư 2

Nên ab : 3 dư 2 (đpcm)


29 tháng 7

Ta biết:

  • a chia 3 dư 1, tức là a = 3k + 1 (k là số tự nhiên nào đó)
  • b chia 3 dư 2, tức là b = 3n + 2 (n là số tự nhiên nào đó)

Giờ ta thử chọn vài số chia 3 dư 1 cho a, và chia 3 dư 2 cho b:

Ví dụ:

  • Chọn a = 4 (vì 4 chia 3 dư 1)
  • Chọn b = 5 (vì 5 chia 3 dư 2)

Tính:
\(a b = 4 \times 5 = 20\)
Rồi lấy 20 chia 3:
20 : 3 = 6 dư 2

🎉 Đúng rồi! ab chia 3 dư 2

Thử thêm ví dụ khác để chắc chắn:

  • Chọn a = 7 (vì 7 chia 3 dư 1)
  • Chọn b = 8 (vì 8 chia 3 dư 2)
    ab = 7 × 8 = 56
    56 : 3 = 18 dư 2

* Lần nữa cũng dư 2.

Kết luận:
Dù chọn số nào thỏa mãn điều kiện thì tích ab vẫn chia 3 dư 2.
Vậy ab chia 3 dư 2 là đúng.

Chúc bạn học tốt = ))

21 tháng 6 2016

đặt a=3q+1,b=3p+2 (q; p thuocN). Ta có a.b= 9pq+ 6q + 3p +2. Vậy.....

21 tháng 8 2016

Ta có a = 3. q + 1 (q là số tự nhiên) 
b = 3 . p + 2 (p là số tự nhiên) 
a.b = (3q + 1)(3p + 2) 
= 9qp + 6q + 3p + 2 
Tổng trên có 9qp, 6q, 3p đều chia hết cho 3 do đó Tổng chia cho 3 dư 2, nghĩa là ab chia cho 3 dư 2.

21 tháng 8 2016

Câu hỏi của Dung Tr - Toán lớp 6 - Học toán với OnlineMath

12 tháng 7 2019

a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)

Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)

                \(=3\left(mn+2m+n\right)+2\)

Vậy ab chia 3 dư 2 .

b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)

Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)

Vậy \(a^2\) chia 5 dư 1 .

9 tháng 9 2021

Đặt a =3k+1, b=3k+2

\(\Rightarrow ab=\left(3k+1\right)\left(3k+2\right)=9k^2+9k+2=3\left(3k^2+3k\right)+2\) chia 3 dư 2

9 tháng 9 2021

cảm ơn bạnhaha

16 tháng 5 2016

Vì a chia 3 dư 1 nên số a có dạng 3k+1

Số b chia 3 dư 2 nên số b có dạng 3k+2

ab=(3k+1)(3k+2)=9k^2+6k+3k+2

Vi 9k^2, 6k và 3k đều chia hết cho 3 

Nên theo đề ab chia 3 dư 2

16 tháng 5 2016

lời giai cua minh quang tuyet voi 

27 tháng 8 2017

Gọi k là một số nguyên, theo đề ta có: 
a=3k+1 
b=3k+2 
ab=(3k+1)(3k+2)=9k^2+9k+2 
vì 9k^2 và 9k chia hết cho 3 
nên ab chia 3 dư 2

27 tháng 8 2017

cám ơn bạn

12 tháng 7 2015

Ta có : a = 3n+1
b = 3m+2
a.b= 3(3nm+m+2n) +2 số này chia 3 sẽ dư 2.

23 tháng 11 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

28 tháng 8 2015

Tưởng có tính chất rồi chứ nhỉ:

a : b dư m

c : b dư n

=> a.c : b dư m.n

Áp dụng tính chất trên ta có:

a.b chia 3 dư 1.2

=> ab chia 3 dư 2

23 tháng 11 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

20 tháng 8 2015

theo bài ra ta có:

a=3q+1(qcn)

b=3k+2(kcn)

ab=(3q+1)(3k+2)=9qk+6q+3k+2=3(3qk+2q+k)+2

ta thấy:3(3qk+2q+k)chia hết cho 3

2 không chia hết cho 3 và 2<3

từ 2 điều trên suy ra ab chia cho 3 dư 2 (dpcm)

 

 

23 tháng 11 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301