Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

+) Nếu \(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow2\frac{a}{b}>\frac{a}{b}+\frac{c}{d}>2\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}>\frac{\frac{a}{b}+\frac{c}{d}}{2}>\frac{c}{d}\)(1)
=> \(\frac{\frac{a}{b}+\frac{c}{d}}{2}\) là một điểm hữu tỉ nằm giữa hai điểm hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\) trên trục số(1)
Tương tự \(\frac{a}{b}< \frac{c}{d}\) thì \(\frac{a}{b}< \frac{\frac{a}{b}+\frac{c}{d}}{2}< \frac{c}{d}\)
=> \(\frac{\frac{a}{b}+\frac{c}{d}}{2}\)là một điểm hữu tỉ nằm giữa hai điểm hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\)trên trục số(2)
Từ (1) và (2) ta có điều phải chứng minh

a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a}{c}-1=\frac{b}{d}-1\Leftrightarrow\frac{a-c}{c}=\frac{b-d}{d}\)
b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{c}{a}=\frac{d}{b}\Leftrightarrow\frac{c}{a}+1=\frac{d}{b}+1\Leftrightarrow\frac{a+c}{a}=\frac{b+d}{b}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)
a)Xét \(VT=\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(1\right)\)
Xét \(VP=\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(2\right)\)
Từ (1) và (2) =>Đpcm
b)Xét \(VT=\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(1\right)\)
Xét \(VP=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) =>Đpcm
c)Xét \(VT=\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^2=\left[\frac{b}{d}\right]^2=\frac{b^2}{d^2}\left(1\right)\)
Xét \(VP=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) =>Đpcm
a/ theo bài ra, ta có:
\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\)
áp dụng tính caahts dã y tỉ số bằng nhau ta có :
\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)
=> \(\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\\ \Rightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\left(đpcm\right)\)
b/ theo bài ra, ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ab}{cd}\left(1\right)\)
ta có:
\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\) (2)
từ 1 và 2 => đpcm
c/ theo bài ra, ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
đặt \(\frac{a}{c}=\frac{b}{d}=k\)
ta có: a = kc
b = kd
=> \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{kc+kd}{c+d}\right)^2=\left(\frac{k\left(c+d\right)}{c+d}\right)^2=k^2\) (1)
=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kc\right)^2+\left(kd\right)^2}{c^2+d^2}=\frac{k^2c^2+k^2d^2}{c^2+d^2}=\frac{k^2\left(c^2+d^2\right)}{c^2+d^2}=k^2\left(2\right)\)
từ 1 và 2 => đpcm

Bài 1:
Ta có: \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^{99}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}\)
Vì \(A=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\) nên \(A< \frac{1}{2}\)
Vậy \(A< \frac{1}{2}\)

Giả sử tồn tại x,y trái dấu thỏa mãn
Khi đo ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)
=> (x+y)2=xy
Đẳng thức trên là vô lí vì (x+y)2\(\ge\)0
Còn xy nhỏ hơn 0 vì x,y trái dấu
Vậy ko có x,y trái dấu thỏa mãn đề bài
1/x+y=1/x+1/y
1/x+y=x+y/xy( nhân vào như bài toán bình thường)
=>(x+y)(x+y)=1.xy
=>(x+y)2=xy
x, y cùng dấu thì phép tính mới dương
🔹 Bước 1: Giả sử có số hữu tỉ đó
Gọi số đó là \(x = \frac{a}{b}\), trong đó:
\(x^{2} = \left(\left(\right. \frac{a}{b} \left.\right)\right)^{2} = \frac{a^{2}}{b^{2}}\)
Giả sử \(x^{2} = \frac{3}{4}\), ta có:
\(\frac{a^{2}}{b^{2}} = \frac{3}{4}\)
Nhân chéo:
\(4 a^{2} = 3 b^{2}\)
Giờ ta phân tích:
=> Vế trái chia hết cho 4 ⇒ vế phải cũng phải chia hết cho 4 ⇒ \(b^{2}\) phải chia hết cho 4 ⇒ \(b\) chia hết cho 2
Tương tự:
⇒ vế trái cũng phải chia hết cho 3 ⇒ \(a^{2}\) chia hết cho 3 ⇒ \(a\) chia hết cho 3
→ Vậy cả a và b đều chia hết cho 3 (hoặc 2), tức là chưa tối giản.
Mâu thuẫn với giả thiết ban đầu là \(\frac{a}{b}\) đã rút gọn.
Kết luận:
Vậy giả sử ban đầu là sai, nên không tồn tại số hữu tỉ nào có bình phương bằng \(\frac{3}{4}\).
Nếu có số hữu tỉ nào mà bình phương bằng \(\frac{3}{4}\), thì sẽ có một phân số khi bình phương lên ra đúng \(\frac{3}{4}\). Nhưng khi ta làm, luôn gặp mâu thuẫn ⇒ không thể có! ✅
Olm chào em. Đây là toán nâng cao chuyên đề số hữu tỉ, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp phản chứng như sau:
Giải:
Giả sử tồn tại số hữu tỉ để bình phương của số hữu tỉ bằng \(\frac34\) khi đó số hữu tỉ có dạng: \(\frac{a}{b}\) (a; b \(\in Z;\) b ≠ 0)
Theo bài ra ta có: \(\left(\frac{a}{b}\right)^2=\frac34\)
⇒4a\(^2\) = 3b\(^2\)
⇒(2a)\(^2\) = 3b\(^2\)
⇒3b\(^2\) là số chính phương
⇒ 3 là số chính phương (vô lý vì số chính phương không thể có tận cùng là 3
Vậy điều giả sử là sai hay không tồn tại số hữu tỉ nào để bình phương của nó bằng \(\frac34\)