
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(9^{x+1}-5.3^{2x}=324\)
\(\Rightarrow9^x.9-5.9^x=324\)
\(\Rightarrow9^x\left(9-5\right)=324\)
\(\Rightarrow9^x.4=324\)
\(\Rightarrow9^x=81\)
\(\Rightarrow9^x=9^2\)
vậy x=2
\(\Rightarrow x=2\)
\(9^{x+1}-5.3^{2x}=324\)
\(9^x.9-5.9^x=324\)
\(9^x.\left(9-5\right)=324\)
\(9^x.4=324\)
\(9^x=81=9^2\)
\(\Rightarrow x=2\)



Thiếu đề không bạn? Tui nghĩ đề vậy nè:
\(9^{x+1}-5.3^{2x}=324\)
\(\Leftrightarrow9.9^x-5.9^x=324\)
\(\Leftrightarrow4.9^x=324\)
\(\Leftrightarrow9^x=81\)
\(\Leftrightarrow9^x=9^2\)
\(\Leftrightarrow x=2\)
Vậy .........

*** \(\dfrac{15-x}{8}=\dfrac{x-23}{10}\)
\(\Rightarrow10\left(15-x\right)=8\left(x-23\right)\)
\(\Rightarrow150-10x=8x-184\)
\(\Rightarrow150+184=10x+8x\)
\(\Rightarrow18x=334\)
\(\Rightarrow x=\dfrac{167}{9}\)
*** \(\dfrac{1}{2}\left|2x-1\right|-3\dfrac{2}{5}=\left(-\dfrac{1}{2}\right).\left(2015\right)^0\)
\(\Rightarrow\dfrac{1}{2}\left|2x-1\right|-3\dfrac{2}{5}=\left(-\dfrac{1}{2}\right).1\)
\(\Rightarrow\dfrac{1}{2}\left|2x-1\right|-3\dfrac{2}{5}=\left(-\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{1}{2}\left|2x-1\right|-3\dfrac{2}{5}=\left(-\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{1}{2}\left|2x-1\right|=\left(-\dfrac{1}{2}\right)+3\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{2}\left|2x-1\right|=\dfrac{29}{10}\)
\(\Rightarrow\left|2x-1\right|=\dfrac{29}{10}:\dfrac{1}{2}\)
\(\Rightarrow\left|2x-1\right|=\dfrac{29}{5}\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=\dfrac{29}{5}\\2x-1=-\dfrac{29}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{34}{5}\\2x=-\dfrac{24}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{17}{5}\\x=-\dfrac{12}{5}\end{matrix}\right.\)
Bài 2 từ dòng 2 đến dòng 7 nên dùng dấu \(\Leftrightarrow \) mới đúng em nhé.

a) \(5^{x+1}-2.5^x=375\)
\(\Rightarrow5^x\left(5-2\right)=375\)
\(\Rightarrow5^x.3=375\)
\(\Rightarrow5^x=125=5^3\)
\(\Rightarrow x=3\)
b) \(9^{x+1}-5.3^{2x}=324\)
\(\Rightarrow3^{2\left(x+1\right)}-5.3^{2x}=324\)
\(\Rightarrow3^2\left(3^{x+1}-5.3^x\right)=324\)
\(\Rightarrow9.3^x\left(3-5\right)=324\)
\(\Rightarrow3^x.\left(-2\right)=36\)
\(\Rightarrow3^x=-18=3^2.\left(-2\right)\)(vô lí vì 3x không chia hết cho 2)
c) \(\left(1-x\right)^5=32=2^5\)
\(\Rightarrow1-x=2\)
\(\Rightarrow x=-1\)
d) \(3.5^{2x+1}-3.25^x=300\)
\(\Rightarrow3\left(5^{2x}.5-5^{2x}\right)=300\)
\(\Rightarrow5^{2x}\left(5-1\right)=100\)
\(\Rightarrow5^{2x}.4=100\)
\(\Rightarrow5^{2x}=25=5^2\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)

1. \(\left(-\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Rightarrow\left(-\dfrac{3}{2}\right)^x=\left(-\dfrac{3}{2}\right)^2\)
\(\Rightarrow x=2\)
2.\(3^{2x+2}=9^{10}\)
\(\Rightarrow3^{2x+2}=\left(3^2\right)^{10}\)
\(\Rightarrow3^{2x+2}=3^{20}\)
\(\Rightarrow2x+2=20\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
3)\(3^{3-2x}=27^{13}\)
\(\Rightarrow3^{3-2x}=\left(3^3\right)^{13}\)
\(\Rightarrow3^{3-2x}=3^{39}\)
\(\Rightarrow3-2x=39\)
\(\Rightarrow2x=-36\)
\(\Rightarrow x=-18\)
4)\(5.3^x=7.3^5-2.3^5\)
\(\Rightarrow5.3^x=3^5\left(7-2\right)\)
\(\Rightarrow5.3^x=3^5.5\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
`9^(x+1) - 5.3^(2x) = 324`
`9^x .9 - 5.3^(2x) = 324`
`3^(2x) . 9 -5.3^(2x) = 324`
`3^(2x) . (9-5) = 324`
`3^(2x) . 4 = 324`
`3^(2x) = 324 :4`
`3^(2x) = 81`
`3^(2x) = 3^4`
`2x=4`
`x=4:2`
`x=2`
Vậy `x=2`
\(9^{x+1}-5\cdot3^{2x}=324\)
\(9^{x+1}-5\cdot\left(3^2\right)^{x}=324\)
\(9^{x}\cdot9-5\cdot9^{x}=324\)
\(9^{x}\cdot\left(9-5\right)=9^{x}\cdot4=324\)
\(9^{x}=324:4=81=9^2\)
\(x=2\)