
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: \(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
Từ: \(x-y-z=0\Rightarrow x-z=y;y-x=-z\) và \(y+z=x\)
Suy ra: \(B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-1\left(x;y;z\ne0\right)\)

1) Vì theo đề bài \(\frac{x-2}{x-6}>0\Rightarrow x\ne0\)
Gọi phân số là \(\frac{a}{b}\)với \(a>b\) (vì tử số lớn hơn mẫu số thì phân số sẽ lớn hơn 1)
\(\Rightarrow x\ge6\)
2) Ta có: \(\frac{3x+9}{x-4}\) có giá trị nguyên . Với 3x + 9 > x - 4
Nếu x = 1 thì \(\frac{3x+9}{x-4}=\frac{31+9}{1-4}=\frac{40}{-31,3333}\) (loại)
Nếu x = 2 thì \(\frac{3x+9}{x-4}=\frac{32+9}{2-4}=\frac{41}{-2}=-20,5\) (loại)
Nếu x = 3 thì \(\frac{3x+9}{x-4}=\frac{33+9}{3-4}=\frac{42}{-1}=-42\)(chọn)
Nếu x = 4 thì \(\frac{3x+9}{x-4}=\frac{34+9}{4-4}=\frac{43}{0}\)(chọn)
Nếu x = 5 thì \(\frac{3x+9}{x-4}=\frac{35+9}{5-4}=\frac{44}{1}=44\)chọn
..và còn nhiều giá trị khác nữa...
Suy ra x = {-3 ; -4 ; -5 ; 3 ; 4 ; 5 ...}Tương tự ta có bảng sau:
x nguyên dương | 3 | 4 | 5 |
x nguyên âm | -3 | -4 | -5 |
Bài 3. Bí rồi, mình mới lớp 6 thôi!
bài 3: đạt B=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right)\):...:\(\left(-1\frac{1}{100}\right)\)
=\(\frac{1}{2}:\frac{-3}{2}:\frac{4}{3}:\frac{-5}{4}:\frac{6}{5}:\frac{-7}{6}:...:\frac{-101}{100}\)=\(\frac{1}{2}.\frac{-2}{3}.\frac{3}{4}.\frac{-4}{5}.\frac{5}{6}\frac{-6}{7}...\frac{-100}{101}\)(có 50 thừa số âm)
=\(\frac{1.2.3.4...100}{2.3.4...101}=\frac{1}{101}\)
vậy B=\(\frac{1}{101}\)
#HỌC TỐT#

1, \(\left(1,5.x-\frac{4}{5}\right).\left(\frac{1}{2019}-\frac{1}{2018}\right)\)\(=0\)
\(\Leftrightarrow\) \(1,5.x-\frac{4}{5}=0:\left(\frac{1}{2019}-\frac{1}{2018}\right)\)
\(1,5.x-\frac{4}{5}=0\)
\(1,5.x=0+\frac{4}{5}\)
\(1,5.x=\frac{4}{5}\)
\(x=\frac{4}{5}:1,5\)
\(x=\frac{4}{5}:\frac{15}{10}\)
\(x=\frac{4}{5}.\frac{10}{15}\)
\(\Rightarrow x=\frac{8}{15}\)
2, \(\frac{2x}{3}+\frac{1}{3}=\left|-\frac{2}{5}\right|\)
\(\Leftrightarrow\frac{2x+1}{3}=\frac{2}{5}\)
\(2x+1=\frac{2}{5}.3\)
\(2x+1=\frac{6}{5}\)
\(2x=\frac{6}{5}-1\)
\(2x=\frac{1}{5}\)
\(x=\frac{1}{5}:2\)
\(x=\frac{1}{5}.\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{10}\)

<=>(x+\(\frac{1}{3}\))\(^3\)=(\(\frac{1}{2}\))\(^3\)
<=>x+\(\frac{1}{3}\)=\(\frac{1}{2}\)
<=>x=\(\frac{1}{2}\)+\(\frac{1}{3}\)
<=>x=\(\frac{5}{6}\)

Ta có: \(\hept{\begin{cases}\left|a\right|\ge0\\\left|b\right|\ge0\\\left|c\right|\ge0\end{cases}}\Rightarrow\left|a\right|+\left|b\right|+\left|c\right|\ge0\)
a)\(\Rightarrow\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\)
\("="\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)
b) \(\Rightarrow\left|2-x\right|+\left|3-y\right|+\left|x+y+z\right|\ge0\)
\("="\Leftrightarrow\hept{\begin{cases}x=2\\y=3\\z=-5\end{cases}}\)
a) \(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|=0\)
Ta có: \(\left|\frac{1}{4}-x\right|\ge0\)với mọi x
\(\left|x-y+z\right|\ge0\)vơi mọi x, y, z
\(\left|\frac{2}{3}+y\right|\ge0\) với mọi y
\(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\) với nọi x, y, z
Dấu "=" xảy ra khi và chỉ khi" \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)
câu b cách làm giống như câu a

=\(2\left(\frac{1}{2}-\frac{1}{2.3}\right).2\left(\frac{1}{2}-\frac{1}{3.4}\right)....2\left(\frac{1}{2}-\frac{1}{99.100}\right)\)
=\(2^{89}\left(\frac{1}{2}.98-\frac{1}{2}+\frac{1}{100}\right)\)
\(=2^{98}.\left(49-\frac{49}{100}\right)=\frac{2^{98}.4851}{100}\)

a)
\(\Rightarrow\left|x-\frac{2}{5}\right|=1\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-\frac{2}{5}=1\\x-\frac{2}{5}=-1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{3}{5}\\x=-\frac{3}{5}\end{array}\right.\)
b)
\(\Rightarrow\frac{3}{2}\left|\frac{1}{4}-x\right|=-\frac{1}{6}\)
Mặt khác vì \(\left|\frac{1}{4}-x\right|\ge0\)
\(\Rightarrow\frac{3}{2}.\left|\frac{1}{4}-x\right|\ge0\)
=> \(x\in\varnothing\)
c)
\(\Rightarrow\frac{4}{3}-\frac{5}{3}.\left|x-\frac{1}{3}\right|=-1\)
\(\Rightarrow\frac{5}{3}.\left|x-\frac{1}{3}\right|=\frac{7}{3}\)
\(\Rightarrow\left|x-\frac{1}{3}\right|=\frac{7}{5}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-\frac{1}{3}=\frac{7}{5}\\x-\frac{1}{3}=-\frac{7}{5}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{26}{15}\\x-\frac{16}{15}\end{array}\right.\)

Bài 1:
a, \(9^{x-1}=\dfrac{1}{9}\)
\(\Rightarrow9^{x-1}=9^{-1}\)
Vì \(9\ne-1;9\ne0;9\ne1\) nên
\(x-1=-1\Rightarrow x=0\)
Vậy \(x=0\)
b, \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\)
\(\Rightarrow\sqrt{7-3x^2}=\dfrac{1}{3}:\dfrac{2}{15}\)
\(\Rightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)
\(\Rightarrow\left(\sqrt{7-3x^2}\right)^2=\left(\dfrac{5}{2}\right)^2\)
\(\Rightarrow7-3x^2=\dfrac{25}{4}\)
\(\Rightarrow3x^2=\dfrac{3}{4}\Rightarrow x^2=\dfrac{1}{4}\)
\(\Rightarrow x=\pm\dfrac{1}{2}\)
Vậy \(x=\pm\dfrac{1}{2}\)
Chúc bạn học tốt!!!
Bài 2:
Với mọi giá trị của \(x;y;z\in R\) ta có:
\(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2\ge}0;\left|x+y+z\right|\ge0\)
\(\Rightarrow\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\ge0\) với mọi giá trị của \(x;y;z\in R\).
Để \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\) thì
\(\left\{{}\begin{matrix}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\\sqrt{2}-\sqrt{2}+z=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)
Vậy \(x=\sqrt{2};y=-\sqrt{2};z=0\)
Chúc bạn học tốt!!!
\(\left(\frac{1}{1011}\right)^{x+1}\cdot2022^{x+1}=32\)
\(\left(\frac{1}{1011}\cdot2022\right)^{x+1}=2^{x+1}=32\)
\(2^{x+1}=2^5\)
\(x+1=5\)
\(x=4\)