K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [E, M] Đoạn thẳng l: Đoạn thẳng [F, M] A = (-1.14, 6.85) A = (-1.14, 6.85) A = (-1.14, 6.85) B = (-3.22, 3.05) B = (-3.22, 3.05) B = (-3.22, 3.05) C = (4.24, 2.98) C = (4.24, 2.98) C = (4.24, 2.98) Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm E: Giao điểm của i, f Điểm E: Giao điểm của i, f Điểm E: Giao điểm của i, f Điểm F: Giao điểm của j, h Điểm F: Giao điểm của j, h Điểm F: Giao điểm của j, h

a. Do ME // AC nên \(\frac{ME}{AC}=\frac{BM}{BC}\); MF // AB nên \(\frac{MF}{AB}=\frac{MC}{BC}\)

Từ đó suy ra \(\frac{ME}{AC}+\frac{MF}{AB}=\frac{BM+MC}{BC}=1\) không đổi.

b. Gọi \(\frac{ME}{AC}=t\Rightarrow\frac{MF}{AB}=1-t\Rightarrow S_{ABC}=\frac{a^2}{t^2}=\frac{b^2}{\left(1-t\right)^2}\)

\(\Rightarrow\frac{a}{t}=\frac{b}{1-t}\Rightarrow a\left(1-t\right)=bt\Rightarrow t=\frac{a}{a+b}\Rightarrow t^2=\frac{a^2}{\left(a+b\right)^2}\Rightarrow S_{ABC}=\frac{a^2}{t^2}=\left(a+b\right)^2.\)

c. \(S_{AEMF}=S_{ABC}-S_{BME}-S_{CMF}=\left(a+b\right)^2-a^2-b^2\)

\(=2ab\le a^2+b^2\)

Dấu bằng xảy ra khi a = b, tức là M là trung điểm BC.

2 tháng 1 2017

ai biết

5 tháng 6 2016

Số chia hết cho 2 và chia cho 5 dư 3 thì chữ số tận cùng là 8. Ta được a678 
Để a678 chia hết cho 9 thì a=6
Số cần tìm là:  6678
ĐS: 6678

17 tháng 4 2017

ơi giời ơi bà con ơi thi HSG mà bài này ko bt làm 

5 tháng 9 2018

vì tứ giác FMEH có góc F = 90 độ; H = 90 độ; E = 90 độ.

\(\Rightarrow\)góc M = 90 độ

\(\Rightarrow FH//ME ; FM//HE\)

\(\Rightarrow\)tứ giác FMEH là hình chữ nhật 

\(\Rightarrow\)ME=FH

a ) tứ giác MFHE có :

\(\widehat{MFH}+\widehat{FHE}+\widehat{HEM}+\widehat{EMF}=360^o\)( tính chất tổng các góc trong tứ giác )

hay \(90^o+90^o+90^o+\widehat{EMF}=360^o\)

\(\Rightarrow\widehat{EMF}=360^o-90^o-90^o-90^o\)

\(\Rightarrow\widehat{EMF}=90^o\)

\(\Rightarrow FM\perp ME\left(dhnb\right)\)

mà \(HE\perp ME\left(gt\right)\)

\(\Rightarrow FM//HE\left(\perp\rightarrow//\right)\)

\(\Rightarrow FHEM\)là hình thang

\(\widehat{MFH}=\widehat{EMF}\left(=90^o\right)\)

\(\Rightarrow FHEM\)là hình thang cân

\(\Rightarrow ME=FH\)( tính chất cạnh trong hình thang cân )

b ) kẻ EF

có M là trung điểm của BC ( gt )

\(\Delta ABC\)cân tại A ( gt )

\(\Rightarrow AM\)là đường cao

\(\Rightarrow AM\)cũng là tia phân giác của \(\widehat{BAC}\)

\(\Rightarrow\widehat{BAM}=\widehat{CAE}\)\(hay\widehat{DAM}=\widehat{EAM}\)

xét \(\Delta MAD\)và \(\Delta MCE\)

\(\hept{\begin{cases}\widehat{ADM}=\widehat{AEM}=90^o\\AMchung\\\widehat{DAM}=\widehat{EAM}\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta MAD=\Delta MCE\left(ch-gn\right)\)

\(\Rightarrow AD=AE\)( 2 cạnh tương ứng )

xét \(\Delta ADK\)và \(\Delta AEK\)có :

\(\hept{\begin{cases}AMchung\\\widehat{DAK}=\widehat{EAK}\left(cmt\right)\\AD=AE\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta ADK=\Delta AEK\left(c-g-c\right)\)

\(\Rightarrow\widehat{AKD}=\widehat{AKE}\)( 2 góc tương ứng )

mà \(\widehat{AKD}+\widehat{AKE}=180^o\left(kb\right)\)

\(\Rightarrow\widehat{AKD}=\widehat{AKE}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AM\perp DK\left(dhnb\right)\)

AM là đường cao \(\Rightarrow AM\perp BC\)

\(\Rightarrow DK//BC\)

\(hayBK//MC\)

\(\Rightarrow MDKC\)là hình thang

                                                                       BẠN TỰ VẼ HÌNH NHA

                                                                                       Giải 

                                    Gọi cạnh tam giác đều ABC la a, chiều cao là h.Ta có:

   a)                      Ta có Stam giác BMC+Stam giác CMA+Stam giác AMB =S​tam giác ABC                    

                   <=>(1/2)ax+(1/2)ay+(1/2)az=(1/2)ah  <=> (1/2)a.(x+y+z)=(1/2)ah      

              <=>x+y+z=h không phụ thuộc vào vị trí của điểm M

   b)                    x2+y2\(\ge\)2xy ; y2+z2\(\ge\)2yz ;  z2+x2\(\ge\)2zx

             =>2.(x2+y2+z2)  \(\ge\)2xy+2xz+2yz

             =>3.(x2+y2+z2)   \(\ge\)x2+y2+z2+2xy+2xz+2yz

            =>x2+y2+z2     \(\ge\)(x+y+z)2/3=h2/3  không đổi

                     Dấu "=" xảy ra khi x=y=z

           Vậy để x2 + y2 + z2 đạt giá trị nhỏ nhất thì M là giao điểm của 3 đường phân giác của tam giác ABC hay M là tâm của tam giác ABC

20 tháng 7 2017

\(a.\)Ta có:    \(S_{\Delta BMC}=\frac{BC.x}{2}\)\(\Rightarrow\)\(x=\frac{2.S_{\Delta MBC}}{BC}\)
                      \(S_{\Delta BMA}=\frac{BA.z}{2}\)\(\Rightarrow\)\(z=\frac{2.S_{\Delta BMA}}{AB}\)
                      \(S_{\Delta AMC}=\frac{AC.y}{2}\)\(\Rightarrow\)\(y=\frac{2.S_{\Delta AMC}}{AC}\)
   mà \(\Delta ABC\) đều nên AB = BC = CA
suy ra \(x+y+z=\frac{2\left(S_{\Delta AMC}+S_{\Delta BMA}+S_{\Delta BMC}\right)}{AB}\)
suy ra đpcm