
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{97}+\frac{1}{98}\right)=\left(1+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\)
\(=\frac{99}{1.98}+\frac{99}{2.97}+...+\frac{99}{49.50}=99.\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right)\)
\(=9.11\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right)\)
Vậy: đpcm


CÁCH 1
Ta có \(A=\frac{89}{99}=\frac{99-1}{99}=\frac{99}{99}-\frac{1}{99}=1-\frac{1}{99}\)
\(B=\frac{98.99+1}{98.99}=\frac{98.99}{98.99}+\frac{1}{98.99}\)
Vì \(\frac{1}{98.99}< \frac{1}{99}\Rightarrow1+\frac{1}{98.99}>1-\frac{1}{99}\Rightarrow\frac{98.99+1}{98.99}>\frac{98}{99}\Rightarrow B>A\)
CÁCH 2
Ta thấy 98 < 99 nên \(\frac{98}{99}< 1\)hay \(A< 1\)
Ta thấy \(98.99+1>98.99\Rightarrow\frac{98.99}{98.99+1}>1\Rightarrow B>1\)
Vì A < 1 ; B > 1 nên A < B
\(A=\frac{98}{99}< 1;\Rightarrow A< 1\)
\(B=\frac{98.99+1}{98.99}\)
Ta loại các số chia hết cho nhau thì được
\(B=\frac{1.1+1}{1.1}=1+1=2\)
\(2>1;\Rightarrow B>1;\Rightarrow B>A\)


a)( 124 x 237 + 152 ) : ( 870 + 235 x 122 )
= 29540 + 29540
= 29540 x 2
= 59080
b) 101 + 100 + 99 + 98 + ... + 3 + 2 + 1
= ( 101 - 1 ) : 1 + 1] x ( 101 + 1 ) : 2
= 101 x 102 : 2
= 10302 : 2
= 5151
c) 101 - 100 + 99 - 98 + .. 3 - 2 + 1
(101-100) + (99-98) + ... + (5-4) + (3-2) +1
=1 + 1 + ... + 1 + 1 + 1
= 1 x 51
= 51
98 chia 0,28 bằng 350.