Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(\Rightarrow x^5+x^4y+x^3y^2+x^2y^3+y^5-yx^4-x^3y^2-x^2y^3-xy^4-y^5=VP\)
\(\Rightarrow dpcm\)
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(\Rightarrow x^5-x^4y+x^3y^2-x^2y^3+xy^4+yx^4-x^3y^2-xy^4+y^5=VP\)
\(\Rightarrow dpcm\)
c.d làm tương tự
Bài làm
a) Biến đổi vế trái, ta được:
\(VT=\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)
\(=\left(x^5-y^5\right)+\left(x^4y-x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5-y^5=VP\left(đpcm\right)\)
b) Biến đổi vế trái, ta có:
\(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=\left(x^5+y^5\right)+\left(-x^4y+x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(-x^2y^3+x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5+y^5=VP\left(đpcm\right)\)
c) Biến đổi vế trái, ta có:
\(VT=\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)\)
\(=a^4-a^3b+a^2b^2-ab^3+a^3b-a^2b^2+ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(-a^3b+a^3b\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)\)
\(=a^4-b^4=VP\left(đpcm\right)\)
d) Đây là hằng đẳng thức, như vế phải hình như bạn viết bị sai, mik sửa là vế phải nha.
\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)
Biến đổi vế trái, ta có:
\(VT=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
\(=\left(a^3+b^3\right)+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)
\(=a^3+b^3=VP\left(đpcm\right)\)

a)\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)
\(=x^5-y^5+\left(x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(\Rightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
b)\(\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
\(=a^3+b^3+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)
\(\Rightarrow\)\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)
a) (x - y)(x4 + x3y + x2y2 + xy3 + y4)
= x(x4 + x3y + x2y2 + xy3 + y4) - y(x4 + x3y + x2y2 + xy3 + y4)
= x5 + x4y + x3y2 + x2y3 + xy4 - x4y - x3y2 - x2y3 - xy4 - y5
= x5 - y5
b) (a + b)(a2 - ab + b2)
= a(a2 - ab + b2) + b(a2 - ab + b2)
= a3 - a2b + ab2 + a2b - ab2 + b3
= a3 + b3

(x-y)(x^4+x^3y+x^2y^2+xy^3+y^4)
= x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5
= (x^4y-x^4y)+(x^3y^2-x^3y^2)+(x^2y^3)+(xy^4-xy^4)+x^5-y^5
= 0+0+0+0+x^5-y^5
= x^5-y^5
Vay (x-y)(x^4+x^3y+x^2y^2+xy^3+y^4) = x^5-y^5

Ta có : VP = \(x^4-y^4\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
Vp\(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\) = VT
Vậy \(x^4-y^4\) \(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\) (đpcm)

2. CMR:
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
Ta có: VT=\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5=x^5-y^5=VP\)=> đpcm.
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)
Ta có: VT=\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5=VP\)
=> đpcm.
c. \(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)
\(\Leftrightarrow x^2+bx+ax+ab=x^2+ax+bx+ab\) (đúng)
=> đpcm.

\(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x\left(x^3+x^2y+xy^2+y^3\right)-y\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=\left(x^4-y^4\right)+\left(x^3y-x^3y\right)+\left(x^2y^2-x^2y^2\right)+\left(xy^3-xy^3\right)\)
\(=x^4-y^4=VP\)
\(VT=\left(a+b\right)^2-\left(a-b\right)^2=4ab\)
\(=\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)\)
\(=a^2+2ab+b^2-a^2+2ab-b^2\)
\(=\left(a^2-a^2\right)-\left(b^2+b^2\right)+\left(2ab+2ab\right)\)
\(=4ab=VP\)
Câu a :
\(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
Nhân 2 vế lại ta được \(x^4-y^4=VP\)
\(\Rightarrowđpcm\)
Câu b :
\(VT=\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)=2b.2a=4ab=VP\)
\(\Rightarrowđpcm\)

Chỗ dấu bằng thứ hai sai nên bạn làm cũng chưa đúng
x^6 -y^6 = (x^2-y^2)(x^4 +x^2 .y^2 + y^4)
Bạn hiểu ra chỗ sai của mình chưa.Chúc bạn học tốt.

a, mình nghĩ đề là cm đẳng thức nhé
\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)
Vậy ta có đpcm
b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)
\(=-5y-9+xy=VP\)
Vậy ta có đpcm
c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)
Vậy ta có đpcm

a/\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1\left(đpcm\right)\)
b/ \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4=x^4-y^4\left(đpcm\right)\)
c/ \(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)=x^2+xy+xz+y^2+xy+yz+z^2+zx+yz=x^2+y^2+z^2+2xy+2yz+2zx\left(đpcm\right)\)
d/ \(\left(x+y+z\right)^3=\left(x+y\right)^3+3\left(x+y\right)^2z+3z^2\left(x+y\right)+z^3\)
\(=\left(x+y\right)^3+3z\left(x^2+2xy+y^2\right)+3z^2\left(x+y\right)+z^3\)
\(=x^3+3x^2y+3xy^2+y^3+3x^2z+6xyz+3y^2z+3z^2x+3yz^2+z^3\)
\(=x^3+y^3+z^3+3xyz+3x^2y+3xy^2+3x^2z+3y^2z+3y^2x+3yz^2+3xyz\)
\(=x^3+y^3+z^3+\left(x+z\right)\left(3xy+3xz+3y^2+3yz\right)\)
\(=x^3+y^3+z^3+\left(x+z\right)\left[3x\left(y+z\right)+3y\left(y+z\right)\right]\)
\(=x^3+y^3+z^3+\left(x+z\right)\left(y+z\right)\left(3x+3y\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)
a, Xét vế trái ta có:
(x-1)(x^2+ x+1)=x^3+ x^2+ x- x^2- x-1
=x^3+ (x^2- x^2)+(x-x)-1
=x^3-1
Vậy...
b,Xét vế trái ta có:(x^3+ x^2y+ xy^2+ y^3)(x-y)
=x^4- x^3y+ x^3y- x^2- y^2+ x^2y^2- xy^3+ xy^3- y^4
=x^4-y^4
Vậy ........
c, Xét vế trái ta có:
(x+y+z)^2=(x+y+z)(x+y+z)
=x^2+ xy+ xz+ yx+y^2+ yz+ zx+ zy+ z^2
=x^2+ y^2+ z^2+ 2xy+ 2xz+ 2yz
Vậy...............
d, Xé vế trái ta có:
(x+y+x)^3=(x+y+z)(x+y+z)(x+y+z)(x+y+z)
=(x^2+y^2+z^2+2xy+2xz+2yz)(x+y+z)
=x^3+ xy^2+ xz^2+ 2x^2y+ 2xyz+ 2x^2z+ x^2y+ y^3+ yz^2+2xy^2+ 2y^2z+z^3+ 2xyz+ x^2z+ y^2z+2xyz+ 2yz^2+ 2xz^2
=x^3+ 3xy^2+ 6xy+ 3x^2y+3xz^2+ 3x^2z+ 3yz^2+ y^3z^3 (1)
Xét vế phải ta có:x^3+ y^3+ z^3+ 3(x+y)(x+y)(y+z)
=x^3+ y^3+ z^3+ 3(xy+ xz+ y^2+ yz)(z+x)
=x^3+ y^3+ z^3+ 3(xyz+ xz^2+ y^2z+ yz^2+ x^2y+ x^2z+ xy^2+xyz)
=x^2+ y^3+ z^3 +3(2xyz+ xz^2+ y^2z+ yz^2+x^2y+x^2z+ xy^2)
=x^3+ y^3+ z^3+6xyz+ 3xz^2+ 3y^2z+3yz^2+ 3x^2y+3x^2z+3xy^2(2)
Từ (1) và (2)=>.......
\(= x^{4} + x^{3} y + x^{2} y^{2} + x y^{3} - x^{3} y - x^{2} y^{2} - x y^{3} - y^{4}\)
\(= x^{4} - y^{4}\)
Vậy, \(\left(\right. x - y \left.\right) \left(\right. x^{3} + x^{2} y + x y^{2} + y^{3} \left.\right) = x^{4} - y^{4}\) (đpcm)
b) \(\left(\right. x + y \left.\right) \left(\right. x^{4} - x^{3} y + x^{2} y^{2} - x y^{3} + y^{4} \left.\right) = x^{5} + y^{5}\) Ta có: \(\left(\right. x + y \left.\right) \left(\right. x^{4} - x^{3} y + x^{2} y^{2} - x y^{3} + y^{4} \left.\right) = x \left(\right. x^{4} - x^{3} y + x^{2} y^{2} - x y^{3} + y^{4} \left.\right) + y \left(\right. x^{4} - x^{3} y + x^{2} y^{2} - x y^{3} + y^{4} \left.\right)\)\(= x^{5} - x^{4} y + x^{3} y^{2} - x^{2} y^{3} + x y^{4} + x^{4} y - x^{3} y^{2} + x^{2} y^{3} - x y^{4} + y^{5}\)
\(= x^{5} + y^{5}\)
Vậy, \(\left(\right. x + y \left.\right) \left(\right. x^{4} - x^{3} y + x^{2} y^{2} - x y^{3} + y^{4} \left.\right) = x^{5} + y^{5}\) (đpcm)